L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.831 − 0.831i)3-s + (0.309 + 0.951i)4-s + (0.891 − 0.453i)5-s + (−0.183 − 1.16i)6-s + (0.707 − 0.707i)7-s + (−0.309 + 0.951i)8-s + 0.381i·9-s + (0.987 + 0.156i)10-s + (0.533 − 1.04i)12-s + (0.987 − 0.156i)14-s + (−1.11 − 0.363i)15-s + (−0.809 + 0.587i)16-s + (0.707 + 0.707i)17-s + (−0.224 + 0.309i)18-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)2-s + (−0.831 − 0.831i)3-s + (0.309 + 0.951i)4-s + (0.891 − 0.453i)5-s + (−0.183 − 1.16i)6-s + (0.707 − 0.707i)7-s + (−0.309 + 0.951i)8-s + 0.381i·9-s + (0.987 + 0.156i)10-s + (0.533 − 1.04i)12-s + (0.987 − 0.156i)14-s + (−1.11 − 0.363i)15-s + (−0.809 + 0.587i)16-s + (0.707 + 0.707i)17-s + (−0.224 + 0.309i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2380 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.804353955\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.804353955\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 - 0.587i)T \) |
| 5 | \( 1 + (-0.891 + 0.453i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (0.831 + 0.831i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.78iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + 1.97T + T^{2} \) |
| 43 | \( 1 + (-1.39 - 1.39i)T + iT^{2} \) |
| 47 | \( 1 + iT^{2} \) |
| 53 | \( 1 + (-0.642 + 0.642i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 0.312T + T^{2} \) |
| 67 | \( 1 + (1.26 - 1.26i)T - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (-0.831 + 0.831i)T - iT^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-1.34 - 1.34i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.911891993377896675337411632557, −7.993662019268856114409766601589, −7.47631114810048374222526046124, −6.56650362363834154146532716905, −6.01738072901133072049136130171, −5.38420700329736902499584331936, −4.60529365911699218447118632023, −3.66256342478411470149834959669, −2.21646506624696078350597497152, −1.21768501701326816428583118927,
1.54230008198984253606168255388, 2.54958594560608865707222367412, 3.47854766258025457389204721776, 4.65878687093723449061978849411, 5.25804945946505641469536869079, 5.63271652249636834143633130997, 6.49342007248527301296758549064, 7.39901205875067714504442960594, 8.772325340130916460187937939525, 9.451909540742578956772541319365