Properties

Label 2-236992-1.1-c1-0-52
Degree $2$
Conductor $236992$
Sign $-1$
Analytic cond. $1892.39$
Root an. cond. $43.5016$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 3·9-s − 4·11-s − 2·13-s + 6·17-s + 8·19-s − 25-s − 6·29-s + 8·31-s + 2·35-s − 2·37-s + 2·41-s − 4·43-s − 6·45-s − 8·47-s + 49-s + 6·53-s − 8·55-s − 6·61-s − 3·63-s − 4·65-s − 4·67-s − 8·71-s + 10·73-s − 4·77-s − 16·79-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 9-s − 1.20·11-s − 0.554·13-s + 1.45·17-s + 1.83·19-s − 1/5·25-s − 1.11·29-s + 1.43·31-s + 0.338·35-s − 0.328·37-s + 0.312·41-s − 0.609·43-s − 0.894·45-s − 1.16·47-s + 1/7·49-s + 0.824·53-s − 1.07·55-s − 0.768·61-s − 0.377·63-s − 0.496·65-s − 0.488·67-s − 0.949·71-s + 1.17·73-s − 0.455·77-s − 1.80·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 236992 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(236992\)    =    \(2^{6} \cdot 7 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(1892.39\)
Root analytic conductor: \(43.5016\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{236992} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 236992,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
23 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 - 8 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31436863430137, −12.73616185767574, −11.97656036324432, −11.82842196092660, −11.44669165392966, −10.65798034092053, −10.31366019974057, −9.892299295387861, −9.469850056596899, −9.076138301942471, −8.278977500233881, −7.939653090094008, −7.600676637737405, −7.086195296872239, −6.302087140812472, −5.770182656624031, −5.433355947152378, −5.159942430340384, −4.623881321896032, −3.667990817685198, −3.080030861428350, −2.821309813078050, −2.140458950627619, −1.516126965049083, −0.8358381532153690, 0, 0.8358381532153690, 1.516126965049083, 2.140458950627619, 2.821309813078050, 3.080030861428350, 3.667990817685198, 4.623881321896032, 5.159942430340384, 5.433355947152378, 5.770182656624031, 6.302087140812472, 7.086195296872239, 7.600676637737405, 7.939653090094008, 8.278977500233881, 9.076138301942471, 9.469850056596899, 9.892299295387861, 10.31366019974057, 10.65798034092053, 11.44669165392966, 11.82842196092660, 11.97656036324432, 12.73616185767574, 13.31436863430137

Graph of the $Z$-function along the critical line