L(s) = 1 | + 0.493·3-s + 1.49i·5-s + 4.26·7-s − 2.75·9-s + 5.13·11-s − 6.13i·13-s + 0.737i·15-s + 4.36i·17-s − 6.36i·19-s + 2.10·21-s − 4.75i·23-s + 2.76·25-s − 2.84·27-s − 6.29i·29-s − 0.873i·31-s + ⋯ |
L(s) = 1 | + 0.285·3-s + 0.668i·5-s + 1.61·7-s − 0.918·9-s + 1.54·11-s − 1.70i·13-s + 0.190i·15-s + 1.05i·17-s − 1.46i·19-s + 0.459·21-s − 0.991i·23-s + 0.553·25-s − 0.547·27-s − 1.16i·29-s − 0.156i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 + 0.373i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 + 0.373i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.456219364\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.456219364\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (5.64 + 2.27i)T \) |
good | 3 | \( 1 - 0.493T + 3T^{2} \) |
| 5 | \( 1 - 1.49iT - 5T^{2} \) |
| 7 | \( 1 - 4.26T + 7T^{2} \) |
| 11 | \( 1 - 5.13T + 11T^{2} \) |
| 13 | \( 1 + 6.13iT - 13T^{2} \) |
| 17 | \( 1 - 4.36iT - 17T^{2} \) |
| 19 | \( 1 + 6.36iT - 19T^{2} \) |
| 23 | \( 1 + 4.75iT - 23T^{2} \) |
| 29 | \( 1 + 6.29iT - 29T^{2} \) |
| 31 | \( 1 + 0.873iT - 31T^{2} \) |
| 41 | \( 1 - 5.87T + 41T^{2} \) |
| 43 | \( 1 - 5.37iT - 43T^{2} \) |
| 47 | \( 1 + 6.72T + 47T^{2} \) |
| 53 | \( 1 - 4.62T + 53T^{2} \) |
| 59 | \( 1 - 2.46iT - 59T^{2} \) |
| 61 | \( 1 + 6.40iT - 61T^{2} \) |
| 67 | \( 1 + 10.3T + 67T^{2} \) |
| 71 | \( 1 - 8.47T + 71T^{2} \) |
| 73 | \( 1 + 8.95T + 73T^{2} \) |
| 79 | \( 1 - 16.1iT - 79T^{2} \) |
| 83 | \( 1 - 5.73T + 83T^{2} \) |
| 89 | \( 1 - 11.8iT - 89T^{2} \) |
| 97 | \( 1 - 1.22iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.628074041191925973018491594503, −8.324467191019490362845481349630, −7.53891131309781813925732358287, −6.58151548890386197570577964271, −5.84656395121204590912668231225, −4.94129828168280464072473733336, −4.06846203959109591555334659538, −3.04500402029554591861422216463, −2.20439868525210827322063805099, −0.901669866613780092782680736561,
1.37273658200530327006317926266, 1.84509399882985802839890303996, 3.40012083363380122023474813896, 4.29257066197420579644222015861, 4.97014486764544029288011215342, 5.76857741393199882754711848983, 6.81907307524831402526439846091, 7.55858139186867363269444100120, 8.490599075971044350354454169708, 8.962099735953969456402741335218