Properties

Label 2-2366-1.1-c1-0-37
Degree $2$
Conductor $2366$
Sign $1$
Analytic cond. $18.8926$
Root an. cond. $4.34656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.35·3-s + 4-s + 1.19·5-s − 1.35·6-s + 7-s − 8-s − 1.15·9-s − 1.19·10-s + 6.04·11-s + 1.35·12-s − 14-s + 1.62·15-s + 16-s + 6.82·17-s + 1.15·18-s + 6.85·19-s + 1.19·20-s + 1.35·21-s − 6.04·22-s + 2.69·23-s − 1.35·24-s − 3.56·25-s − 5.64·27-s + 28-s − 9.28·29-s − 1.62·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.783·3-s + 0.5·4-s + 0.535·5-s − 0.553·6-s + 0.377·7-s − 0.353·8-s − 0.386·9-s − 0.378·10-s + 1.82·11-s + 0.391·12-s − 0.267·14-s + 0.419·15-s + 0.250·16-s + 1.65·17-s + 0.273·18-s + 1.57·19-s + 0.267·20-s + 0.296·21-s − 1.28·22-s + 0.561·23-s − 0.276·24-s − 0.712·25-s − 1.08·27-s + 0.188·28-s − 1.72·29-s − 0.296·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2366\)    =    \(2 \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(18.8926\)
Root analytic conductor: \(4.34656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2366,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.276257696\)
\(L(\frac12)\) \(\approx\) \(2.276257696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 - 1.35T + 3T^{2} \)
5 \( 1 - 1.19T + 5T^{2} \)
11 \( 1 - 6.04T + 11T^{2} \)
17 \( 1 - 6.82T + 17T^{2} \)
19 \( 1 - 6.85T + 19T^{2} \)
23 \( 1 - 2.69T + 23T^{2} \)
29 \( 1 + 9.28T + 29T^{2} \)
31 \( 1 - 6.30T + 31T^{2} \)
37 \( 1 + 8.89T + 37T^{2} \)
41 \( 1 + 8.78T + 41T^{2} \)
43 \( 1 + 1.64T + 43T^{2} \)
47 \( 1 - 5.55T + 47T^{2} \)
53 \( 1 + 5.13T + 53T^{2} \)
59 \( 1 - 5.43T + 59T^{2} \)
61 \( 1 - 3.87T + 61T^{2} \)
67 \( 1 - 2.18T + 67T^{2} \)
71 \( 1 - 1.56T + 71T^{2} \)
73 \( 1 - 1.46T + 73T^{2} \)
79 \( 1 + 10.4T + 79T^{2} \)
83 \( 1 - 11.7T + 83T^{2} \)
89 \( 1 - 1.91T + 89T^{2} \)
97 \( 1 + 7.30T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.033724250541500518952285570481, −8.343459210573410122758358483972, −7.58335892993246119175153945267, −6.90842359133185767686178381146, −5.86864710004429638845260910803, −5.26269504056444984751283714102, −3.70212808866987808248794180483, −3.22767522512921899371598752269, −1.91381429650179824514052015099, −1.16080912754010559199178432945, 1.16080912754010559199178432945, 1.91381429650179824514052015099, 3.22767522512921899371598752269, 3.70212808866987808248794180483, 5.26269504056444984751283714102, 5.86864710004429638845260910803, 6.90842359133185767686178381146, 7.58335892993246119175153945267, 8.343459210573410122758358483972, 9.033724250541500518952285570481

Graph of the $Z$-function along the critical line