Properties

Label 2-2349-29.17-c0-0-1
Degree $2$
Conductor $2349$
Sign $0.981 + 0.189i$
Analytic cond. $1.17230$
Root an. cond. $1.08272$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·4-s i·5-s − 7-s − 16-s + (1 − i)17-s + 20-s + 23-s i·28-s + 29-s + (1 − i)31-s + i·35-s + (1 + i)37-s + (1 + i)41-s + (−1 − i)47-s + 53-s + ⋯
L(s)  = 1  + i·4-s i·5-s − 7-s − 16-s + (1 − i)17-s + 20-s + 23-s i·28-s + 29-s + (1 − i)31-s + i·35-s + (1 + i)37-s + (1 + i)41-s + (−1 − i)47-s + 53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2349\)    =    \(3^{4} \cdot 29\)
Sign: $0.981 + 0.189i$
Analytic conductor: \(1.17230\)
Root analytic conductor: \(1.08272\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2349} (568, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2349,\ (\ :0),\ 0.981 + 0.189i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.093570875\)
\(L(\frac12)\) \(\approx\) \(1.093570875\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 - T \)
good2 \( 1 - iT^{2} \)
5 \( 1 + iT - T^{2} \)
7 \( 1 + T + T^{2} \)
11 \( 1 - iT^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 + (-1 + i)T - iT^{2} \)
19 \( 1 - iT^{2} \)
23 \( 1 - T + T^{2} \)
31 \( 1 + (-1 + i)T - iT^{2} \)
37 \( 1 + (-1 - i)T + iT^{2} \)
41 \( 1 + (-1 - i)T + iT^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + (1 + i)T + iT^{2} \)
53 \( 1 - T + T^{2} \)
59 \( 1 + T + T^{2} \)
61 \( 1 + (1 - i)T - iT^{2} \)
67 \( 1 + iT - T^{2} \)
71 \( 1 + iT - T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 - iT^{2} \)
83 \( 1 - T + T^{2} \)
89 \( 1 - iT^{2} \)
97 \( 1 + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.305134393330529707605753632343, −8.287400472825736004553177689436, −7.79501360615056756381825861626, −6.86154607734526134628713924083, −6.14832004139168365807020156519, −4.97319908251020754179885928260, −4.42256626606445576128210246825, −3.24298088113248238688516250838, −2.72817665679783159836025001549, −0.930357227656702054880520072378, 1.15555129381057699301323505858, 2.59849964297284911130658777640, 3.27368605251826183374782963944, 4.39300616518608718716527575519, 5.45853757730507149171352741613, 6.23803972827246826326582240184, 6.65544577940571423129189195672, 7.46470510273772524571081124296, 8.522778225583319620606362124773, 9.439010897641020007044047736536

Graph of the $Z$-function along the critical line