L(s) = 1 | + (0.939 + 1.62i)2-s + (−1.26 + 2.19i)4-s + (0.939 + 1.62i)7-s − 2.87·8-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)13-s + (−1.76 + 3.05i)14-s + (−1.43 − 2.49i)16-s + 1.53·17-s + (0.326 − 0.565i)22-s + (−0.5 − 0.866i)25-s − 0.652·26-s − 4.75·28-s + (−0.5 − 0.866i)29-s + (1.26 − 2.19i)32-s + ⋯ |
L(s) = 1 | + (0.939 + 1.62i)2-s + (−1.26 + 2.19i)4-s + (0.939 + 1.62i)7-s − 2.87·8-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)13-s + (−1.76 + 3.05i)14-s + (−1.43 − 2.49i)16-s + 1.53·17-s + (0.326 − 0.565i)22-s + (−0.5 − 0.866i)25-s − 0.652·26-s − 4.75·28-s + (−0.5 − 0.866i)29-s + (1.26 − 2.19i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.984 + 0.173i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.893324320\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.893324320\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - 1.53T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - 0.347T + T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.106034900812612965976127045923, −8.451791944245686735614044908972, −7.955230117831130385058537795384, −7.28346040436681689910829719714, −6.15889656710566183989168694266, −5.68924531187133946454840636212, −5.16026954037864162177387723111, −4.31287182914823307544266950779, −3.28830166246203580413371851445, −2.21039186434728909219936165965,
1.05791711734422744677005334687, 1.76017716341023010294763205871, 3.15196674231519060306929874599, 3.71589865119563659722596788210, 4.64118465694282537174484254730, 5.10535188266800588153173626536, 6.06356792026455164812294320797, 7.39438284185195053924571042968, 7.88013013745734756998114814827, 9.171985405594236177287930061232