L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 − 0.866i)7-s + 8-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.499 − 0.866i)14-s + (0.5 − 0.866i)16-s − 17-s + (−0.499 − 0.866i)22-s + (−0.5 + 0.866i)25-s + 0.999·26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)34-s + (−1 − 1.73i)41-s + (0.5 − 0.866i)47-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 − 0.866i)7-s + 8-s + (0.5 − 0.866i)11-s + (0.5 + 0.866i)13-s + (−0.499 − 0.866i)14-s + (0.5 − 0.866i)16-s − 17-s + (−0.499 − 0.866i)22-s + (−0.5 + 0.866i)25-s + 0.999·26-s + (−0.5 + 0.866i)29-s + (−0.5 + 0.866i)34-s + (−1 − 1.73i)41-s + (0.5 − 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.864225862\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.864225862\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.949236574575763489242640537746, −8.424421247558174261973734677595, −7.27472621269047602996597487632, −6.92405789528774558144501641152, −5.74281376078611196497433155739, −4.74079935359141024773329738533, −3.90853517882023714021971010320, −3.51207808181038410569330838312, −2.16479665743735331232219848984, −1.30889049399874421084846846450,
1.59736743448486564007680171172, 2.53596855720886573411880936667, 4.00553614865281672756648527803, 4.71569927051995902317305188021, 5.47394030218173697574716247415, 6.22840990604063261751098207621, 6.76710318971175644770152157904, 7.82288122298197313375547977668, 8.245496835502830298412590598696, 9.230651093887423964095041606055