L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (0.499 + 0.866i)14-s + (0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)22-s + (−0.5 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)34-s + (1 + 1.73i)41-s + (−0.5 + 0.866i)47-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.5 − 0.866i)7-s − 8-s + (−0.5 + 0.866i)11-s + (0.5 + 0.866i)13-s + (0.499 + 0.866i)14-s + (0.5 − 0.866i)16-s + 17-s + (−0.499 − 0.866i)22-s + (−0.5 + 0.866i)25-s − 0.999·26-s + (0.5 − 0.866i)29-s + (−0.5 + 0.866i)34-s + (1 + 1.73i)41-s + (−0.5 + 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9486758371\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9486758371\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.446295129169520255240476262996, −8.320865341611171081410594024599, −7.79390817150058365486026692100, −7.28923919052202620910187721647, −6.51022253449871771757361718452, −5.71507915810527708854598076809, −4.67572823611261978021256647948, −3.86887968909074910615004539819, −2.73437569766984234489949647826, −1.37307258523795463114404955882,
0.837912564029636181169903870958, 2.06882255985564483004333347178, 2.91310204240849799603633423801, 3.68815216195576276136331921070, 5.26206935524964163026334869826, 5.63913720750977585500279247924, 6.45021212996510603166879184992, 7.74838802162324416450205172911, 8.412138299847160747349755640002, 8.910984258929684722708219687622