L(s) = 1 | + (0.366 − 1.36i)2-s + (−0.866 − 0.5i)4-s + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)7-s + (−1 + 0.999i)10-s + (−1.36 + 0.366i)14-s + (−0.499 − 0.866i)16-s + (−1 − i)17-s + (1 + i)19-s + (0.499 + 0.866i)20-s + (0.5 − 0.866i)23-s + 0.999i·28-s + (−0.866 + 0.5i)29-s + (−1.36 + 0.366i)32-s + (−1.73 + i)34-s + 0.999i·35-s + ⋯ |
L(s) = 1 | + (0.366 − 1.36i)2-s + (−0.866 − 0.5i)4-s + (−0.866 − 0.5i)5-s + (−0.5 − 0.866i)7-s + (−1 + 0.999i)10-s + (−1.36 + 0.366i)14-s + (−0.499 − 0.866i)16-s + (−1 − i)17-s + (1 + i)19-s + (0.499 + 0.866i)20-s + (0.5 − 0.866i)23-s + 0.999i·28-s + (−0.866 + 0.5i)29-s + (−1.36 + 0.366i)32-s + (−1.73 + i)34-s + 0.999i·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8874163390\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8874163390\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
good | 2 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (1 - i)T - iT^{2} \) |
| 41 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-1 - i)T + iT^{2} \) |
| 97 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.963956606185261339201570092853, −7.936746814104209464190566611983, −7.24655512191826519492940558876, −6.45829714350991732571217286888, −4.98090535368269701049946964352, −4.52086432453538568732430406329, −3.58298636811914662113846003914, −3.09316332512652184969404004109, −1.73850473420676377137760132437, −0.52403242093895125540826430104,
2.13981867595504848408537893201, 3.36593735107322594558647321970, 4.12841951106615396474764608264, 5.21954986363095026238843576385, 5.76864295279639176127127827323, 6.65787263230301847667854131133, 7.23752689519024410722807635587, 7.78965675411524727968701225764, 8.821625400142158115608634244477, 9.122907446640266811316296524778