L(s) = 1 | + (0.866 + 0.5i)4-s + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.499 + 0.866i)16-s + (−1 − i)17-s + (0.499 + 0.866i)20-s + (0.5 − 0.866i)23-s + 0.999i·28-s + (0.5 + 0.866i)29-s + (−1.36 + 0.366i)31-s + 0.999i·35-s + (1 − i)37-s + (−0.366 − 1.36i)41-s + (−1.36 − 0.366i)47-s − 53-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)4-s + (0.866 + 0.5i)5-s + (0.5 + 0.866i)7-s + (0.499 + 0.866i)16-s + (−1 − i)17-s + (0.499 + 0.866i)20-s + (0.5 − 0.866i)23-s + 0.999i·28-s + (0.5 + 0.866i)29-s + (−1.36 + 0.366i)31-s + 0.999i·35-s + (1 − i)37-s + (−0.366 − 1.36i)41-s + (−1.36 − 0.366i)47-s − 53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2349 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 - 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.752513612\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.752513612\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (1 + i)T + iT^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.037616296471888635840913829636, −8.712756570888152038641522784046, −7.58492059612502583379036852827, −6.93541403122397519785171848703, −6.25619627954591655820484970627, −5.49654833368979946218486382615, −4.58774898356782282150440337824, −3.24060903095444923943417211503, −2.44891492967330118606564591510, −1.85845618377890606085168874854,
1.35204363059341798769391924494, 1.92150647527524357003169667662, 3.18988805440586236504421122481, 4.41437258879506967575592719168, 5.14162138046082510947805721888, 6.10833764425395088482163905109, 6.53349405948757499173598083347, 7.56948923340759331375661129674, 8.140485503715759833526620191175, 9.294436595114122270620692441260