Properties

Label 2-23400-1.1-c1-0-10
Degree $2$
Conductor $23400$
Sign $1$
Analytic cond. $186.849$
Root an. cond. $13.6693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·11-s + 13-s − 8·17-s + 5·19-s + 4·23-s − 9·29-s − 4·31-s − 3·37-s − 5·41-s + 6·43-s + 5·47-s − 7·49-s + 5·53-s + 6·59-s + 4·61-s − 3·67-s − 7·71-s + 4·73-s − 79-s + 6·83-s + 6·89-s − 4·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 1.20·11-s + 0.277·13-s − 1.94·17-s + 1.14·19-s + 0.834·23-s − 1.67·29-s − 0.718·31-s − 0.493·37-s − 0.780·41-s + 0.914·43-s + 0.729·47-s − 49-s + 0.686·53-s + 0.781·59-s + 0.512·61-s − 0.366·67-s − 0.830·71-s + 0.468·73-s − 0.112·79-s + 0.658·83-s + 0.635·89-s − 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23400\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(186.849\)
Root analytic conductor: \(13.6693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.130280930\)
\(L(\frac12)\) \(\approx\) \(2.130280930\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 - 5 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + 3 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.39977775614815, −14.95422685713606, −14.39916221641515, −13.83026437544980, −13.21612069891785, −12.96556786769485, −12.07824815525353, −11.61813264799484, −11.09037100736868, −10.75940951608935, −9.811335986650645, −9.246635258517178, −8.952044464595942, −8.385659789031956, −7.369567065660737, −7.090936823389070, −6.469991275913687, −5.774629763130301, −5.152382644631880, −4.387749977180234, −3.799616228520196, −3.209707812555261, −2.193603771458857, −1.583026915048347, −0.5926783353546874, 0.5926783353546874, 1.583026915048347, 2.193603771458857, 3.209707812555261, 3.799616228520196, 4.387749977180234, 5.152382644631880, 5.774629763130301, 6.469991275913687, 7.090936823389070, 7.369567065660737, 8.385659789031956, 8.952044464595942, 9.246635258517178, 9.811335986650645, 10.75940951608935, 11.09037100736868, 11.61813264799484, 12.07824815525353, 12.96556786769485, 13.21612069891785, 13.83026437544980, 14.39916221641515, 14.95422685713606, 15.39977775614815

Graph of the $Z$-function along the critical line