L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·8-s + (0.866 − 0.499i)10-s + (−0.866 − 0.5i)13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.133i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (−0.866 − 0.5i)29-s + (−0.499 − 0.866i)32-s + (−0.366 + 0.366i)34-s + (−1.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·8-s + (0.866 − 0.499i)10-s + (−0.866 − 0.5i)13-s + (−0.5 + 0.866i)16-s + (0.5 + 0.133i)17-s + 0.999i·20-s + (0.499 + 0.866i)25-s + (0.866 − 0.499i)26-s + (−0.866 − 0.5i)29-s + (−0.499 − 0.866i)32-s + (−0.366 + 0.366i)34-s + (−1.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00863 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00863 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3472845468\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3472845468\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 1.86i)T + (-0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.366 + 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.881458983510503631513239056165, −8.104266001564976172338377989474, −7.48831034912817493805800605692, −6.98355017853281330391557101839, −5.77122444638184464059719122694, −5.20220539340973334318632605744, −4.34510063630086096102587094281, −3.40844477832833191527724739663, −1.81245344969346057681788964419, −0.28402367551332149014345822461,
1.53164347387995186227553287436, 2.77030436131004327929984237913, 3.43771685732487504187831223809, 4.37944164728560165579300009571, 5.12029046824492415092468934739, 6.55906971334438774985289505264, 7.31056210837175164628610218190, 7.88788778513139673720739626064, 8.657601467555114713482251359456, 9.475194544127627533151873365181