L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999i·8-s + 0.999i·10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (1.86 − 0.5i)17-s + (−0.499 − 0.866i)20-s + (−0.499 − 0.866i)25-s + (−0.866 − 0.499i)26-s + (−0.866 + 0.5i)29-s + (0.866 + 0.499i)32-s + (−1.36 + 1.36i)34-s + (0.866 + 1.5i)37-s + ⋯ |
L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999i·8-s + 0.999i·10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (1.86 − 0.5i)17-s + (−0.499 − 0.866i)20-s + (−0.499 − 0.866i)25-s + (−0.866 − 0.499i)26-s + (−0.866 + 0.5i)29-s + (0.866 + 0.499i)32-s + (−1.36 + 1.36i)34-s + (0.866 + 1.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0557i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0557i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9385491084\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9385491084\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-1.86 + 0.5i)T + (0.866 - 0.5i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 37 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 + iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.167133059553393619732447419790, −8.420921873823650466644103825660, −7.81079504183611018342282617963, −6.92249881622708960189258484768, −6.09446160193517165910735243330, −5.40331889256978653395252865663, −4.68458995031354895229339435588, −3.33958476469430365857257331550, −1.94403699290133779680436145252, −1.07915593727502063334740732845,
1.20707250774332776105861197395, 2.36933693791612729874955773674, 3.25273887595260172844971689944, 3.90957038239880204748714457849, 5.57839964075950981265432986474, 6.06000156412875539359960910176, 7.15833806368652436414800583779, 7.71553840784388557971849401970, 8.394084062110201801378161233282, 9.398923164113387056969051185028