L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·8-s − 0.999·10-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−1.5 − 0.866i)17-s + (0.499 + 0.866i)20-s + (−0.499 − 0.866i)25-s + (−0.499 + 0.866i)26-s + (0.5 + 0.866i)29-s + (−0.499 + 0.866i)32-s + 1.73i·34-s + (−0.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + 0.999·8-s − 0.999·10-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−1.5 − 0.866i)17-s + (0.499 + 0.866i)20-s + (−0.499 − 0.866i)25-s + (−0.499 + 0.866i)26-s + (0.5 + 0.866i)29-s + (−0.499 + 0.866i)32-s + 1.73i·34-s + (−0.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 + 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7522175054\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7522175054\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + 1.73iT - T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.972337002872417002452170565700, −8.401778810997543046604790358185, −7.51601375782960703317785784678, −6.69019193514015482135868879667, −5.40167907940970704936161584671, −4.82929680043790461930194013427, −3.92012694808935278542603996351, −2.73191806492029992542916402400, −1.96000304757661680868619476886, −0.59399449254363931391372537060,
1.67726933105061520128119459838, 2.63513941741403956007444998458, 4.12843145676526470424961264557, 4.78968537723391802193478270294, 6.05369756595507505462621147984, 6.36594065584998593666017584046, 7.11874892192957121085948739382, 7.87082337847413851745786429646, 8.738941703944119702979204921167, 9.451415212167278172449171789783