L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999i·8-s − 0.999i·10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (0.133 + 0.5i)17-s + (−0.499 − 0.866i)20-s + (−0.499 − 0.866i)25-s + (0.866 + 0.499i)26-s + (0.866 − 0.5i)29-s + (−0.866 − 0.499i)32-s + (0.366 + 0.366i)34-s + (−0.866 − 1.5i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.5 − 0.866i)5-s − 0.999i·8-s − 0.999i·10-s + (0.5 + 0.866i)13-s + (−0.5 − 0.866i)16-s + (0.133 + 0.5i)17-s + (−0.499 − 0.866i)20-s + (−0.499 − 0.866i)25-s + (0.866 + 0.499i)26-s + (0.866 − 0.5i)29-s + (−0.866 − 0.499i)32-s + (0.366 + 0.366i)34-s + (−0.866 − 1.5i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0685 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0685 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.169520435\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.169520435\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.133 - 0.5i)T + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 37 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.096713701726011420807575555466, −8.402583155664788994602536351827, −7.29346605852254943832861068955, −6.27738383091008390513079338350, −5.86930186113270934868107254434, −4.81256849062531741367931286955, −4.31040739339857216659515147712, −3.29222078788837956199935565656, −2.10459441704836291819434505634, −1.26711099409722401725594078406,
1.87612162852862824683263168521, 3.06412986090775477133388049195, 3.45216462216322413216569623716, 4.79063526288280567473940927309, 5.43228193840309335966466086369, 6.32959598610290596765816915725, 6.78983634175255012629334002550, 7.67767995667911654500272758827, 8.342394787758079696265290519007, 9.292439106892323469345638685892