L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s − 0.999i·8-s − 0.999·10-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (−0.866 + 0.499i)20-s + (0.499 + 0.866i)25-s + (−0.866 − 0.499i)26-s + (−0.866 − 1.5i)29-s + (−0.866 − 0.499i)32-s − 0.999·34-s + (1.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s − 0.999i·8-s − 0.999·10-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)16-s + (−0.866 − 0.5i)17-s + (−0.866 + 0.499i)20-s + (0.499 + 0.866i)25-s + (−0.866 − 0.499i)26-s + (−0.866 − 1.5i)29-s + (−0.866 − 0.499i)32-s − 0.999·34-s + (1.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.702 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.435340173\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.435340173\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + 1.73iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.090324439474516032468972809786, −7.86528116982065478189834930068, −7.47369468307186785712034245211, −6.34963665988411493588594886189, −5.59335386538048255474220839280, −4.65146067074393548277043764824, −4.18414491534423442540038253087, −3.13764524901342363360085729479, −2.25533035638406032652542607572, −0.71044187085812859597763986823,
2.06960231900078257004042246077, 3.05446947225381177732920498698, 4.01153916361877504613798231799, 4.51017727356715657098780451605, 5.53178174649521614354643157240, 6.48977830936366570058823423273, 7.06564944371412836476142431046, 7.65444359298530889207378888665, 8.538742383182854866424691149897, 9.199451983604331789357226145990