| L(s) = 1 | + (−0.5 + 0.866i)2-s + 3-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)6-s + 0.999·8-s + 9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (−0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s − 19-s + (−0.499 + 0.866i)20-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)2-s + 3-s + (−0.499 − 0.866i)4-s + (−0.5 − 0.866i)5-s + (−0.5 + 0.866i)6-s + 0.999·8-s + 9-s + 0.999·10-s + (0.5 − 0.866i)11-s + (−0.499 − 0.866i)12-s + (−0.5 − 0.866i)13-s + (−0.5 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)18-s − 19-s + (−0.499 + 0.866i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.050484585\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.050484585\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 + 0.866i)T \) |
| good | 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 2T + T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.661055699589130180535151441461, −8.300756641870889131911582708735, −8.015559584416281026620576784725, −6.83542237563253147449215930732, −6.23477615010856153496479284269, −5.03868742953076065479452388364, −4.41241174789999351779192572766, −3.49053203116501723776213759790, −2.12569077275718931684522299537, −0.75725747379875438284348863245,
1.81343786534014853727541099872, 2.32850402317742262407898713786, 3.57166649761305001521953794087, 3.92999079637170995273045792389, 4.88013061056666931797370596065, 6.66136255041799322787354412926, 7.13471435504345859573964188907, 7.893741555564120625044813261275, 8.542610144520106586035921637335, 9.447269725741462308409749414728