L(s) = 1 | + (−0.5 − 0.866i)2-s − i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.866 + 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (0.866 + 1.5i)11-s + (0.866 + 0.499i)12-s + (0.5 − 0.866i)13-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s + 1.73·19-s + (0.499 + 0.866i)20-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s − i·3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (−0.866 + 0.5i)6-s + 0.999·8-s − 9-s − 0.999·10-s + (0.866 + 1.5i)11-s + (0.866 + 0.499i)12-s + (0.5 − 0.866i)13-s + (−0.866 − 0.5i)15-s + (−0.5 − 0.866i)16-s + (0.5 + 0.866i)18-s + 1.73·19-s + (0.499 + 0.866i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.023154521\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.023154521\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (-0.5 + 0.866i)T \) |
good | 7 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - 1.73T + T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 - 2T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.137666756607444907423938147800, −7.968943929789013885410091199438, −7.73724338134141498342244928020, −6.70725474757530813947660337775, −5.71553584976334165583652810264, −4.84979821705487008294227435349, −3.84512617205539265200951578821, −2.68216177727182389958648606409, −1.73335580312741655932349145265, −0.978423838209223911295764501775,
1.43151840045065731886016545629, 3.16854550771410183984683091499, 3.72554453358336893932114731584, 5.02479758508331546814592854695, 5.63185820681886494487051998006, 6.44480274407306018587053737754, 6.94154877164749361744479568005, 8.119828887448112418826734248262, 8.850370101767836838211275366803, 9.349382502603466700540368976596