L(s) = 1 | + (1.80 + 1.31i)5-s + (−0.602 − 0.602i)7-s + 1.84i·11-s + (−0.707 + 0.707i)13-s + (3.70 − 3.70i)17-s + 7.06i·19-s + (−0.688 − 0.688i)23-s + (1.53 + 4.75i)25-s − 5.94·29-s − 0.288·31-s + (−0.296 − 1.88i)35-s + (5.56 + 5.56i)37-s + 5.63i·41-s + (5.76 − 5.76i)43-s + (−4.61 + 4.61i)47-s + ⋯ |
L(s) = 1 | + (0.808 + 0.588i)5-s + (−0.227 − 0.227i)7-s + 0.556i·11-s + (−0.196 + 0.196i)13-s + (0.898 − 0.898i)17-s + 1.62i·19-s + (−0.143 − 0.143i)23-s + (0.307 + 0.951i)25-s − 1.10·29-s − 0.0517·31-s + (−0.0501 − 0.318i)35-s + (0.914 + 0.914i)37-s + 0.879i·41-s + (0.878 − 0.878i)43-s + (−0.672 + 0.672i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.242 - 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.851920373\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.851920373\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.80 - 1.31i)T \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (0.602 + 0.602i)T + 7iT^{2} \) |
| 11 | \( 1 - 1.84iT - 11T^{2} \) |
| 17 | \( 1 + (-3.70 + 3.70i)T - 17iT^{2} \) |
| 19 | \( 1 - 7.06iT - 19T^{2} \) |
| 23 | \( 1 + (0.688 + 0.688i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.94T + 29T^{2} \) |
| 31 | \( 1 + 0.288T + 31T^{2} \) |
| 37 | \( 1 + (-5.56 - 5.56i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.63iT - 41T^{2} \) |
| 43 | \( 1 + (-5.76 + 5.76i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.61 - 4.61i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.46 - 7.46i)T + 53iT^{2} \) |
| 59 | \( 1 + 9.07T + 59T^{2} \) |
| 61 | \( 1 - 9.04T + 61T^{2} \) |
| 67 | \( 1 + (-0.873 - 0.873i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.96iT - 71T^{2} \) |
| 73 | \( 1 + (4.12 - 4.12i)T - 73iT^{2} \) |
| 79 | \( 1 - 6.25iT - 79T^{2} \) |
| 83 | \( 1 + (-3.77 - 3.77i)T + 83iT^{2} \) |
| 89 | \( 1 + 9.52T + 89T^{2} \) |
| 97 | \( 1 + (-7.80 - 7.80i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.564201378566447587561190971551, −8.307041830000986647004186378752, −7.48074963001771146730225863729, −6.90775893526712805492652863155, −5.95481003453569943570581017987, −5.42028040630265296910585547481, −4.28459166628550281866554803373, −3.32954777167736861188148209195, −2.39649508747830777851719555460, −1.34331053898742827907517485177,
0.65155858091450498107763905769, 1.92597517446484017110141475132, 2.90503908206931132916193497290, 3.96864816748570444768730544398, 5.01709389003249741918225866467, 5.71070322148720976156979180043, 6.28745632033314374656731228603, 7.33552008793748965606389832370, 8.135359789719221750149150042998, 9.029415639857108956352948426198