L(s) = 1 | + (1.25 − 1.84i)5-s + (−1.73 − 1.73i)7-s − 0.384i·11-s + (−0.707 + 0.707i)13-s + (−4.01 + 4.01i)17-s − 1.31i·19-s + (−3.09 − 3.09i)23-s + (−1.82 − 4.65i)25-s − 5.58·29-s − 4.45·31-s + (−5.38 + 1.01i)35-s + (7.95 + 7.95i)37-s − 7.37i·41-s + (−6.63 + 6.63i)43-s + (9.03 − 9.03i)47-s + ⋯ |
L(s) = 1 | + (0.563 − 0.826i)5-s + (−0.655 − 0.655i)7-s − 0.116i·11-s + (−0.196 + 0.196i)13-s + (−0.972 + 0.972i)17-s − 0.302i·19-s + (−0.644 − 0.644i)23-s + (−0.365 − 0.930i)25-s − 1.03·29-s − 0.800·31-s + (−0.910 + 0.172i)35-s + (1.30 + 1.30i)37-s − 1.15i·41-s + (−1.01 + 1.01i)43-s + (1.31 − 1.31i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.977 - 0.213i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.977 - 0.213i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3801997460\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3801997460\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.25 + 1.84i)T \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (1.73 + 1.73i)T + 7iT^{2} \) |
| 11 | \( 1 + 0.384iT - 11T^{2} \) |
| 17 | \( 1 + (4.01 - 4.01i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.31iT - 19T^{2} \) |
| 23 | \( 1 + (3.09 + 3.09i)T + 23iT^{2} \) |
| 29 | \( 1 + 5.58T + 29T^{2} \) |
| 31 | \( 1 + 4.45T + 31T^{2} \) |
| 37 | \( 1 + (-7.95 - 7.95i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.37iT - 41T^{2} \) |
| 43 | \( 1 + (6.63 - 6.63i)T - 43iT^{2} \) |
| 47 | \( 1 + (-9.03 + 9.03i)T - 47iT^{2} \) |
| 53 | \( 1 + (-4.78 - 4.78i)T + 53iT^{2} \) |
| 59 | \( 1 + 8.10T + 59T^{2} \) |
| 61 | \( 1 + 15.0T + 61T^{2} \) |
| 67 | \( 1 + (-5.47 - 5.47i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.23iT - 71T^{2} \) |
| 73 | \( 1 + (7.10 - 7.10i)T - 73iT^{2} \) |
| 79 | \( 1 - 11.1iT - 79T^{2} \) |
| 83 | \( 1 + (5.98 + 5.98i)T + 83iT^{2} \) |
| 89 | \( 1 + 10.1T + 89T^{2} \) |
| 97 | \( 1 + (-3.76 - 3.76i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.718164557204105246047189206611, −7.88832929915591097610531611202, −6.92070521376264289820216634900, −6.24295323835338804659817590239, −5.49279005220929381920442902343, −4.43065325744909141474826308654, −3.88133679805467744566974219511, −2.54655456754788449812176368726, −1.51173254530528671989079972434, −0.11905110093829531305702870738,
1.89759113350179022518698999342, 2.69170386299422299806290375714, 3.52137408127553158593119161817, 4.65776303413840065397328924726, 5.83610010666624372543342211516, 6.05522319642837731529435406915, 7.18934076308790048672154033759, 7.59360394143198211743488788863, 8.902067191058409891573723287939, 9.435097783820251443556186608005