Properties

Label 2-2340-12.11-c1-0-25
Degree $2$
Conductor $2340$
Sign $-0.747 - 0.664i$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.879 + 1.10i)2-s + (−0.453 − 1.94i)4-s + i·5-s + 1.56i·7-s + (2.55 + 1.21i)8-s + (−1.10 − 0.879i)10-s + 1.65·11-s − 13-s + (−1.73 − 1.37i)14-s + (−3.58 + 1.76i)16-s − 5.13i·17-s + 5.90i·19-s + (1.94 − 0.453i)20-s + (−1.45 + 1.83i)22-s + 6.28·23-s + ⋯
L(s)  = 1  + (−0.621 + 0.783i)2-s + (−0.226 − 0.973i)4-s + 0.447i·5-s + 0.590i·7-s + (0.903 + 0.427i)8-s + (−0.350 − 0.278i)10-s + 0.499·11-s − 0.277·13-s + (−0.462 − 0.367i)14-s + (−0.897 + 0.441i)16-s − 1.24i·17-s + 1.35i·19-s + (0.435 − 0.101i)20-s + (−0.310 + 0.390i)22-s + 1.31·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.747 - 0.664i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.747 - 0.664i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $-0.747 - 0.664i$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (1691, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ -0.747 - 0.664i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.056683016\)
\(L(\frac12)\) \(\approx\) \(1.056683016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.879 - 1.10i)T \)
3 \( 1 \)
5 \( 1 - iT \)
13 \( 1 + T \)
good7 \( 1 - 1.56iT - 7T^{2} \)
11 \( 1 - 1.65T + 11T^{2} \)
17 \( 1 + 5.13iT - 17T^{2} \)
19 \( 1 - 5.90iT - 19T^{2} \)
23 \( 1 - 6.28T + 23T^{2} \)
29 \( 1 - 7.68iT - 29T^{2} \)
31 \( 1 + 0.700iT - 31T^{2} \)
37 \( 1 + 7.59T + 37T^{2} \)
41 \( 1 + 11.6iT - 41T^{2} \)
43 \( 1 - 10.5iT - 43T^{2} \)
47 \( 1 - 2.37T + 47T^{2} \)
53 \( 1 - 10.1iT - 53T^{2} \)
59 \( 1 - 9.80T + 59T^{2} \)
61 \( 1 + 0.593T + 61T^{2} \)
67 \( 1 - 2.24iT - 67T^{2} \)
71 \( 1 + 1.93T + 71T^{2} \)
73 \( 1 - 4.73T + 73T^{2} \)
79 \( 1 + 13.0iT - 79T^{2} \)
83 \( 1 + 14.7T + 83T^{2} \)
89 \( 1 + 9.12iT - 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.930754219173524312266381130283, −8.810378715831656279645775546307, −7.49024982967092064680692869082, −7.18449255598060173183766735523, −6.28657473058622203064163311614, −5.49336224587377500446363496774, −4.83535865140869498239435550677, −3.56993023617965357624642588282, −2.42474622159711044372792248685, −1.20135520656026028495581131780, 0.50726665882483842477024028385, 1.56877650437128433451165973385, 2.68370727119054328668472474864, 3.76770423964158470994924110684, 4.40908267953123757953149223741, 5.35107650945931512782668540613, 6.71427779522099957754061686840, 7.18145112841367176133654503213, 8.270403534785971467191713100701, 8.680494912962884539440192580444

Graph of the $Z$-function along the critical line