L(s) = 1 | + (0.142 + 1.40i)2-s + (−1.95 + 0.400i)4-s + i·5-s + 4.04i·7-s + (−0.842 − 2.70i)8-s + (−1.40 + 0.142i)10-s + 2.27·11-s − 13-s + (−5.69 + 0.576i)14-s + (3.67 − 1.56i)16-s + 3.42i·17-s + 0.567i·19-s + (−0.400 − 1.95i)20-s + (0.324 + 3.20i)22-s − 1.96·23-s + ⋯ |
L(s) = 1 | + (0.100 + 0.994i)2-s + (−0.979 + 0.200i)4-s + 0.447i·5-s + 1.53i·7-s + (−0.297 − 0.954i)8-s + (−0.444 + 0.0450i)10-s + 0.686·11-s − 0.277·13-s + (−1.52 + 0.154i)14-s + (0.919 − 0.392i)16-s + 0.830i·17-s + 0.130i·19-s + (−0.0895 − 0.438i)20-s + (0.0690 + 0.683i)22-s − 0.408·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.684 + 0.729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.684 + 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.110744069\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.110744069\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.142 - 1.40i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 - 4.04iT - 7T^{2} \) |
| 11 | \( 1 - 2.27T + 11T^{2} \) |
| 17 | \( 1 - 3.42iT - 17T^{2} \) |
| 19 | \( 1 - 0.567iT - 19T^{2} \) |
| 23 | \( 1 + 1.96T + 23T^{2} \) |
| 29 | \( 1 - 3.48iT - 29T^{2} \) |
| 31 | \( 1 - 8.13iT - 31T^{2} \) |
| 37 | \( 1 + 4.83T + 37T^{2} \) |
| 41 | \( 1 - 5.67iT - 41T^{2} \) |
| 43 | \( 1 + 9.24iT - 43T^{2} \) |
| 47 | \( 1 + 1.33T + 47T^{2} \) |
| 53 | \( 1 + 0.876iT - 53T^{2} \) |
| 59 | \( 1 - 10.4T + 59T^{2} \) |
| 61 | \( 1 + 2.03T + 61T^{2} \) |
| 67 | \( 1 + 10.8iT - 67T^{2} \) |
| 71 | \( 1 - 4.49T + 71T^{2} \) |
| 73 | \( 1 + 14.2T + 73T^{2} \) |
| 79 | \( 1 + 6.76iT - 79T^{2} \) |
| 83 | \( 1 - 5.39T + 83T^{2} \) |
| 89 | \( 1 - 10.7iT - 89T^{2} \) |
| 97 | \( 1 + 4.37T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.142344666998440036920961150682, −8.667131742743878868930030243484, −8.009733012592047401013722242431, −6.95240483860254135865975677396, −6.42559637462081090094401238895, −5.63300176250319990061282777234, −5.02549159666278911755967111734, −3.88352944173056631450445694715, −3.02975824732293393935689973858, −1.73827656349216338593644302809,
0.39070374118525139456087811185, 1.31765481804187298223707639004, 2.52662762502391246120329074586, 3.75178942779969567666210405020, 4.21712374954971995807602288706, 5.00279836836006602893280696853, 6.03573089705181634844128705917, 7.10491721064599468706858938821, 7.80535233773966071054063671505, 8.679649067776355244563929675813