Properties

Label 2-2340-12.11-c1-0-12
Degree $2$
Conductor $2340$
Sign $0.375 - 0.926i$
Analytic cond. $18.6849$
Root an. cond. $4.32261$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.10 − 0.878i)2-s + (0.456 + 1.94i)4-s i·5-s + 1.38i·7-s + (1.20 − 2.55i)8-s + (−0.878 + 1.10i)10-s − 5.13·11-s + 13-s + (1.21 − 1.53i)14-s + (−3.58 + 1.77i)16-s − 3.53i·17-s − 0.325i·19-s + (1.94 − 0.456i)20-s + (5.69 + 4.50i)22-s + 0.980·23-s + ⋯
L(s)  = 1  + (−0.783 − 0.621i)2-s + (0.228 + 0.973i)4-s − 0.447i·5-s + 0.522i·7-s + (0.425 − 0.904i)8-s + (−0.277 + 0.350i)10-s − 1.54·11-s + 0.277·13-s + (0.324 − 0.409i)14-s + (−0.895 + 0.444i)16-s − 0.856i·17-s − 0.0747i·19-s + (0.435 − 0.102i)20-s + (1.21 + 0.961i)22-s + 0.204·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.375 - 0.926i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.375 - 0.926i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2340\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $0.375 - 0.926i$
Analytic conductor: \(18.6849\)
Root analytic conductor: \(4.32261\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2340} (1691, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2340,\ (\ :1/2),\ 0.375 - 0.926i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5643313224\)
\(L(\frac12)\) \(\approx\) \(0.5643313224\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.10 + 0.878i)T \)
3 \( 1 \)
5 \( 1 + iT \)
13 \( 1 - T \)
good7 \( 1 - 1.38iT - 7T^{2} \)
11 \( 1 + 5.13T + 11T^{2} \)
17 \( 1 + 3.53iT - 17T^{2} \)
19 \( 1 + 0.325iT - 19T^{2} \)
23 \( 1 - 0.980T + 23T^{2} \)
29 \( 1 + 1.62iT - 29T^{2} \)
31 \( 1 - 0.932iT - 31T^{2} \)
37 \( 1 - 2.94T + 37T^{2} \)
41 \( 1 - 4.77iT - 41T^{2} \)
43 \( 1 - 6.22iT - 43T^{2} \)
47 \( 1 + 0.275T + 47T^{2} \)
53 \( 1 - 7.49iT - 53T^{2} \)
59 \( 1 - 2.16T + 59T^{2} \)
61 \( 1 + 1.92T + 61T^{2} \)
67 \( 1 - 15.6iT - 67T^{2} \)
71 \( 1 - 3.68T + 71T^{2} \)
73 \( 1 + 13.3T + 73T^{2} \)
79 \( 1 + 3.04iT - 79T^{2} \)
83 \( 1 + 5.92T + 83T^{2} \)
89 \( 1 - 7.21iT - 89T^{2} \)
97 \( 1 + 6.95T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.150413657035343532288005323541, −8.453547699460489644688182141587, −7.82237414520828358547389242976, −7.14262677653576539814664754951, −5.99670826397490828940608081057, −5.11160529123628381397216831961, −4.25459220802183083141859467233, −2.95674925182688214761614168139, −2.43976647644698215993417181359, −1.08052902035220890453418295718, 0.27909477863646139936671867683, 1.77049898834915749494191012721, 2.82762950527856992822103173644, 4.05121602190833384504408032931, 5.16843012602677008611098467559, 5.81129078876726872074679772943, 6.70634821441818943911483224843, 7.40514056630305871860726649840, 8.021998712682221784045123274256, 8.662161220873920983145444931341

Graph of the $Z$-function along the critical line