L(s) = 1 | + (1.09 − 0.890i)2-s + (0.415 − 1.95i)4-s − i·5-s + 3.54i·7-s + (−1.28 − 2.51i)8-s + (−0.890 − 1.09i)10-s − 6.08·11-s + 13-s + (3.15 + 3.89i)14-s + (−3.65 − 1.62i)16-s + 3.53i·17-s − 7.05i·19-s + (−1.95 − 0.415i)20-s + (−6.68 + 5.41i)22-s − 8.80·23-s + ⋯ |
L(s) = 1 | + (0.777 − 0.629i)2-s + (0.207 − 0.978i)4-s − 0.447i·5-s + 1.34i·7-s + (−0.454 − 0.890i)8-s + (−0.281 − 0.347i)10-s − 1.83·11-s + 0.277·13-s + (0.843 + 1.04i)14-s + (−0.913 − 0.406i)16-s + 0.857i·17-s − 1.61i·19-s + (−0.437 − 0.0929i)20-s + (−1.42 + 1.15i)22-s − 1.83·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.395 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2340 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.1973427196\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1973427196\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.09 + 0.890i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 - T \) |
good | 7 | \( 1 - 3.54iT - 7T^{2} \) |
| 11 | \( 1 + 6.08T + 11T^{2} \) |
| 17 | \( 1 - 3.53iT - 17T^{2} \) |
| 19 | \( 1 + 7.05iT - 19T^{2} \) |
| 23 | \( 1 + 8.80T + 23T^{2} \) |
| 29 | \( 1 - 6.95iT - 29T^{2} \) |
| 31 | \( 1 - 7.51iT - 31T^{2} \) |
| 37 | \( 1 - 4.00T + 37T^{2} \) |
| 41 | \( 1 - 5.66iT - 41T^{2} \) |
| 43 | \( 1 + 11.6iT - 43T^{2} \) |
| 47 | \( 1 + 10.0T + 47T^{2} \) |
| 53 | \( 1 - 0.895iT - 53T^{2} \) |
| 59 | \( 1 + 0.110T + 59T^{2} \) |
| 61 | \( 1 + 15.3T + 61T^{2} \) |
| 67 | \( 1 + 4.96iT - 67T^{2} \) |
| 71 | \( 1 + 0.295T + 71T^{2} \) |
| 73 | \( 1 + 2.23T + 73T^{2} \) |
| 79 | \( 1 + 0.594iT - 79T^{2} \) |
| 83 | \( 1 - 2.65T + 83T^{2} \) |
| 89 | \( 1 - 4.54iT - 89T^{2} \) |
| 97 | \( 1 + 1.60T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.212890707709592164852666810978, −8.611147452597665304875864399768, −7.81825389875834516842182061119, −6.61198920299582321685777241384, −5.80582104464872100053497306734, −5.19264665737663037319840040132, −4.63078913908137093752189658525, −3.32658772146367663371549604044, −2.56519719905935255688301882612, −1.74083488312454266141971409320,
0.04522035152394704423810448066, 2.13248299063798108832263081213, 3.12995160263332398416811426595, 4.02401754034995778783102115192, 4.64384832641463347458799355744, 5.81623018361187488179157942036, 6.18621060359543935124528483346, 7.39153870535132752681056945977, 7.82856931249540266460035142751, 8.125396141418745494162221642560