L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.880 + 1.49i)3-s + (0.866 − 0.499i)4-s + (1.93 − 0.517i)5-s + (−1.23 − 1.21i)6-s + (1.87 + 1.87i)7-s + (−0.707 + 0.707i)8-s + (−1.44 + 2.62i)9-s + (−1.73 + 0.999i)10-s + (−1.12 − 4.21i)11-s + (1.50 + 0.851i)12-s + (1.69 − 3.18i)13-s + (−2.29 − 1.32i)14-s + (2.47 + 2.42i)15-s + (0.500 − 0.866i)16-s + (−1.21 + 2.09i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.508 + 0.861i)3-s + (0.433 − 0.249i)4-s + (0.863 − 0.231i)5-s + (−0.504 − 0.495i)6-s + (0.709 + 0.709i)7-s + (−0.249 + 0.249i)8-s + (−0.482 + 0.875i)9-s + (−0.547 + 0.316i)10-s + (−0.340 − 1.27i)11-s + (0.435 + 0.245i)12-s + (0.470 − 0.882i)13-s + (−0.614 − 0.354i)14-s + (0.638 + 0.625i)15-s + (0.125 − 0.216i)16-s + (−0.293 + 0.508i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.550 - 0.834i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09605 + 0.590340i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09605 + 0.590340i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 - 0.258i)T \) |
| 3 | \( 1 + (-0.880 - 1.49i)T \) |
| 13 | \( 1 + (-1.69 + 3.18i)T \) |
good | 5 | \( 1 + (-1.93 + 0.517i)T + (4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.87 - 1.87i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.12 + 4.21i)T + (-9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (1.21 - 2.09i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.64 - 6.14i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 1.22T + 23T^{2} \) |
| 29 | \( 1 + (3.87 + 2.23i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.18 - 8.14i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-2.49 + 9.31i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (4.85 + 4.85i)T + 41iT^{2} \) |
| 43 | \( 1 + 10.2iT - 43T^{2} \) |
| 47 | \( 1 + (-5.22 - 1.40i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 0.142iT - 53T^{2} \) |
| 59 | \( 1 + (3.88 + 1.03i)T + (51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 + 10.0T + 61T^{2} \) |
| 67 | \( 1 + (-1.78 + 1.78i)T - 67iT^{2} \) |
| 71 | \( 1 + (-7.11 + 1.90i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (4.15 + 4.15i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.161 + 0.280i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.01 - 3.79i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-14.2 - 3.83i)T + (77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (6.20 - 6.20i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.17144078119423542449976571220, −10.87047670898289381622928179796, −10.40798650185799470883882653388, −9.257405934875122971736873049578, −8.535018565610980831006751243938, −7.88747123987019399893579451016, −5.79568561360711879143764641523, −5.47032954551496028519042850845, −3.50874713788117291724269791025, −1.98957473353963113512414796865,
1.52649536209657578202572529442, 2.59284645692781251545966189280, 4.54489396010783974622225322195, 6.34185137391732751163705904837, 7.18506627708218066799612283670, 7.968955856551595116311361922642, 9.240522984711386604644401208749, 9.826794962996286530995221311902, 11.12920115055266462306247378399, 11.83934454387743072145095413194