L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.880 + 1.49i)3-s + (0.866 − 0.499i)4-s + (1.93 − 0.517i)5-s + (−1.23 − 1.21i)6-s + (1.87 + 1.87i)7-s + (−0.707 + 0.707i)8-s + (−1.44 + 2.62i)9-s + (−1.73 + 0.999i)10-s + (−1.12 − 4.21i)11-s + (1.50 + 0.851i)12-s + (1.69 − 3.18i)13-s + (−2.29 − 1.32i)14-s + (2.47 + 2.42i)15-s + (0.500 − 0.866i)16-s + (−1.21 + 2.09i)17-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.508 + 0.861i)3-s + (0.433 − 0.249i)4-s + (0.863 − 0.231i)5-s + (−0.504 − 0.495i)6-s + (0.709 + 0.709i)7-s + (−0.249 + 0.249i)8-s + (−0.482 + 0.875i)9-s + (−0.547 + 0.316i)10-s + (−0.340 − 1.27i)11-s + (0.435 + 0.245i)12-s + (0.470 − 0.882i)13-s + (−0.614 − 0.354i)14-s + (0.638 + 0.625i)15-s + (0.125 − 0.216i)16-s + (−0.293 + 0.508i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.550−0.834i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.550−0.834i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.550−0.834i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.550−0.834i)
|
Particular Values
L(1) |
≈ |
1.09605+0.590340i |
L(21) |
≈ |
1.09605+0.590340i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 3 | 1+(−0.880−1.49i)T |
| 13 | 1+(−1.69+3.18i)T |
good | 5 | 1+(−1.93+0.517i)T+(4.33−2.5i)T2 |
| 7 | 1+(−1.87−1.87i)T+7iT2 |
| 11 | 1+(1.12+4.21i)T+(−9.52+5.5i)T2 |
| 17 | 1+(1.21−2.09i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.64−6.14i)T+(−16.4+9.5i)T2 |
| 23 | 1+1.22T+23T2 |
| 29 | 1+(3.87+2.23i)T+(14.5+25.1i)T2 |
| 31 | 1+(−2.18−8.14i)T+(−26.8+15.5i)T2 |
| 37 | 1+(−2.49+9.31i)T+(−32.0−18.5i)T2 |
| 41 | 1+(4.85+4.85i)T+41iT2 |
| 43 | 1+10.2iT−43T2 |
| 47 | 1+(−5.22−1.40i)T+(40.7+23.5i)T2 |
| 53 | 1+0.142iT−53T2 |
| 59 | 1+(3.88+1.03i)T+(51.0+29.5i)T2 |
| 61 | 1+10.0T+61T2 |
| 67 | 1+(−1.78+1.78i)T−67iT2 |
| 71 | 1+(−7.11+1.90i)T+(61.4−35.5i)T2 |
| 73 | 1+(4.15+4.15i)T+73iT2 |
| 79 | 1+(0.161+0.280i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.01−3.79i)T+(−71.8−41.5i)T2 |
| 89 | 1+(−14.2−3.83i)T+(77.0+44.5i)T2 |
| 97 | 1+(6.20−6.20i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.17144078119423542449976571220, −10.87047670898289381622928179796, −10.40798650185799470883882653388, −9.257405934875122971736873049578, −8.535018565610980831006751243938, −7.88747123987019399893579451016, −5.79568561360711879143764641523, −5.47032954551496028519042850845, −3.50874713788117291724269791025, −1.98957473353963113512414796865,
1.52649536209657578202572529442, 2.59284645692781251545966189280, 4.54489396010783974622225322195, 6.34185137391732751163705904837, 7.18506627708218066799612283670, 7.968955856551595116311361922642, 9.240522984711386604644401208749, 9.826794962996286530995221311902, 11.12920115055266462306247378399, 11.83934454387743072145095413194