L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.579 − 1.63i)3-s + (0.499 + 0.866i)4-s + (−3.32 + 1.91i)5-s + (−0.314 + 1.70i)6-s + (2.91 + 1.68i)7-s − 0.999i·8-s + (−2.32 + 1.89i)9-s + 3.83·10-s + (1.72 + 0.995i)11-s + (1.12 − 1.31i)12-s + (−0.985 + 3.46i)13-s + (−1.68 − 2.91i)14-s + (5.05 + 4.31i)15-s + (−0.5 + 0.866i)16-s + 2.60·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.334 − 0.942i)3-s + (0.249 + 0.433i)4-s + (−1.48 + 0.857i)5-s + (−0.128 + 0.695i)6-s + (1.10 + 0.636i)7-s − 0.353i·8-s + (−0.776 + 0.630i)9-s + 1.21·10-s + (0.520 + 0.300i)11-s + (0.324 − 0.380i)12-s + (−0.273 + 0.961i)13-s + (−0.450 − 0.779i)14-s + (1.30 + 1.11i)15-s + (−0.125 + 0.216i)16-s + 0.630·17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.728−0.684i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.728−0.684i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.728−0.684i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.728−0.684i)
|
Particular Values
L(1) |
≈ |
0.556911+0.220660i |
L(21) |
≈ |
0.556911+0.220660i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866+0.5i)T |
| 3 | 1+(0.579+1.63i)T |
| 13 | 1+(0.985−3.46i)T |
good | 5 | 1+(3.32−1.91i)T+(2.5−4.33i)T2 |
| 7 | 1+(−2.91−1.68i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.72−0.995i)T+(5.5+9.52i)T2 |
| 17 | 1−2.60T+17T2 |
| 19 | 1+1.99iT−19T2 |
| 23 | 1+(−2.13−3.70i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.37−7.57i)T+(−14.5−25.1i)T2 |
| 31 | 1+(4.57−2.64i)T+(15.5−26.8i)T2 |
| 37 | 1−5.08iT−37T2 |
| 41 | 1+(−7.13+4.12i)T+(20.5−35.5i)T2 |
| 43 | 1+(5.13−8.88i)T+(−21.5−37.2i)T2 |
| 47 | 1+(4.22+2.44i)T+(23.5+40.7i)T2 |
| 53 | 1+9.16T+53T2 |
| 59 | 1+(−6.33+3.65i)T+(29.5−51.0i)T2 |
| 61 | 1+(−5.63+9.76i)T+(−30.5−52.8i)T2 |
| 67 | 1+(4.90−2.83i)T+(33.5−58.0i)T2 |
| 71 | 1−1.94iT−71T2 |
| 73 | 1+8.41iT−73T2 |
| 79 | 1+(−2.97+5.15i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2.03−1.17i)T+(41.5+71.8i)T2 |
| 89 | 1−6.28iT−89T2 |
| 97 | 1+(−8.92−5.15i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.85375008041248590083250151878, −11.46805850620971836630567555421, −10.88546067082397737785966240846, −9.179085059470702808828981315201, −8.145465452074967399843340879825, −7.42519876872847634014647395313, −6.70358136859963011518104733546, −4.93796269094145841954998369654, −3.31602315052713877078848801825, −1.73255538269655530829488288100,
0.66017336061119900310996449685, 3.74742622915692270406001412105, 4.63925065257298138073925738083, 5.68583462026333758853900065066, 7.50626569140115857001132887499, 8.115674711576626579463557744032, 8.975295680086208942474541887875, 10.16479966413188274683725354881, 11.16516061912183657198291421642, 11.63255736193953416874582531761