L(s) = 1 | + (−0.258 + 0.965i)2-s + (0.675 − 1.59i)3-s + (−0.866 − 0.499i)4-s + (0.435 − 1.62i)5-s + (1.36 + 1.06i)6-s + (−0.212 − 0.212i)7-s + (0.707 − 0.707i)8-s + (−2.08 − 2.15i)9-s + (1.45 + 0.842i)10-s + (−1.53 − 0.411i)11-s + (−1.38 + 1.04i)12-s + (2.24 − 2.82i)13-s + (0.260 − 0.150i)14-s + (−2.29 − 1.79i)15-s + (0.500 + 0.866i)16-s + (−1.26 − 2.19i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (0.390 − 0.920i)3-s + (−0.433 − 0.249i)4-s + (0.194 − 0.727i)5-s + (0.557 + 0.434i)6-s + (−0.0803 − 0.0803i)7-s + (0.249 − 0.249i)8-s + (−0.695 − 0.718i)9-s + (0.461 + 0.266i)10-s + (−0.462 − 0.124i)11-s + (−0.399 + 0.301i)12-s + (0.622 − 0.782i)13-s + (0.0695 − 0.0401i)14-s + (−0.593 − 0.463i)15-s + (0.125 + 0.216i)16-s + (−0.306 − 0.531i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.620+0.784i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.620+0.784i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.620+0.784i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.620+0.784i)
|
Particular Values
L(1) |
≈ |
1.06800−0.517165i |
L(21) |
≈ |
1.06800−0.517165i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 3 | 1+(−0.675+1.59i)T |
| 13 | 1+(−2.24+2.82i)T |
good | 5 | 1+(−0.435+1.62i)T+(−4.33−2.5i)T2 |
| 7 | 1+(0.212+0.212i)T+7iT2 |
| 11 | 1+(1.53+0.411i)T+(9.52+5.5i)T2 |
| 17 | 1+(1.26+2.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−4.16−1.11i)T+(16.4+9.5i)T2 |
| 23 | 1−1.32T+23T2 |
| 29 | 1+(6.48−3.74i)T+(14.5−25.1i)T2 |
| 31 | 1+(−10.3−2.78i)T+(26.8+15.5i)T2 |
| 37 | 1+(2.37−0.637i)T+(32.0−18.5i)T2 |
| 41 | 1+(−2.66−2.66i)T+41iT2 |
| 43 | 1−7.42iT−43T2 |
| 47 | 1+(−0.928−3.46i)T+(−40.7+23.5i)T2 |
| 53 | 1+3.63iT−53T2 |
| 59 | 1+(−0.187−0.699i)T+(−51.0+29.5i)T2 |
| 61 | 1+11.2T+61T2 |
| 67 | 1+(0.690−0.690i)T−67iT2 |
| 71 | 1+(1.84−6.87i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−3.38−3.38i)T+73iT2 |
| 79 | 1+(3.69−6.40i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−11.8+3.18i)T+(71.8−41.5i)T2 |
| 89 | 1+(0.512+1.91i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−4.41+4.41i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.35575588878714697886855304262, −11.14781638867457846198232118326, −9.772534097351300053382872159902, −8.812699695459869726387991215125, −8.065752006577822007651953550406, −7.15020490882589427728412268428, −6.00111073844031544179447247219, −5.01561701739341805436251299586, −3.13447659633336656521644037699, −1.10128160496247438849510158010,
2.35646302185415736984197050492, 3.49576643217525880573789022461, 4.65158292312950449913506690440, 6.06668830383665271245798989083, 7.56808726116132783377315438885, 8.746180394114616896432797094761, 9.543232632108439803614986697371, 10.46442096218553048608134779417, 11.07179936694065348935784046540, 12.03397324109907918189085743663