L(s) = 1 | + (−0.258 + 0.965i)2-s + (1.73 + 0.00498i)3-s + (−0.866 − 0.499i)4-s + (0.361 − 1.35i)5-s + (−0.453 + 1.67i)6-s + (−0.715 − 0.715i)7-s + (0.707 − 0.707i)8-s + (2.99 + 0.0172i)9-s + (1.21 + 0.699i)10-s + (5.61 + 1.50i)11-s + (−1.49 − 0.870i)12-s + (−0.218 + 3.59i)13-s + (0.876 − 0.505i)14-s + (0.633 − 2.33i)15-s + (0.500 + 0.866i)16-s + (−1.67 − 2.89i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (0.999 + 0.00287i)3-s + (−0.433 − 0.249i)4-s + (0.161 − 0.603i)5-s + (−0.184 + 0.682i)6-s + (−0.270 − 0.270i)7-s + (0.249 − 0.249i)8-s + (0.999 + 0.00575i)9-s + (0.382 + 0.221i)10-s + (1.69 + 0.453i)11-s + (−0.432 − 0.251i)12-s + (−0.0606 + 0.998i)13-s + (0.234 − 0.135i)14-s + (0.163 − 0.603i)15-s + (0.125 + 0.216i)16-s + (−0.405 − 0.702i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.874−0.484i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.874−0.484i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.874−0.484i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.874−0.484i)
|
Particular Values
L(1) |
≈ |
1.48559+0.383971i |
L(21) |
≈ |
1.48559+0.383971i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 3 | 1+(−1.73−0.00498i)T |
| 13 | 1+(0.218−3.59i)T |
good | 5 | 1+(−0.361+1.35i)T+(−4.33−2.5i)T2 |
| 7 | 1+(0.715+0.715i)T+7iT2 |
| 11 | 1+(−5.61−1.50i)T+(9.52+5.5i)T2 |
| 17 | 1+(1.67+2.89i)T+(−8.5+14.7i)T2 |
| 19 | 1+(7.07+1.89i)T+(16.4+9.5i)T2 |
| 23 | 1−0.580T+23T2 |
| 29 | 1+(0.892−0.515i)T+(14.5−25.1i)T2 |
| 31 | 1+(8.52+2.28i)T+(26.8+15.5i)T2 |
| 37 | 1+(7.82−2.09i)T+(32.0−18.5i)T2 |
| 41 | 1+(−1.15−1.15i)T+41iT2 |
| 43 | 1−8.38iT−43T2 |
| 47 | 1+(0.388+1.45i)T+(−40.7+23.5i)T2 |
| 53 | 1+2.77iT−53T2 |
| 59 | 1+(3.10+11.5i)T+(−51.0+29.5i)T2 |
| 61 | 1−2.82T+61T2 |
| 67 | 1+(0.802−0.802i)T−67iT2 |
| 71 | 1+(2.71−10.1i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−0.788−0.788i)T+73iT2 |
| 79 | 1+(0.827−1.43i)T+(−39.5−68.4i)T2 |
| 83 | 1+(15.7−4.21i)T+(71.8−41.5i)T2 |
| 89 | 1+(−0.783−2.92i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−8.70+8.70i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60605647427349043518487113859, −11.27612590264436316957825764429, −9.786762905548961121065863479862, −9.096384709656616514597186108496, −8.613098746648845220570519884187, −7.08911508935083289746505175869, −6.60992190698929842234354519452, −4.72615966995407827330159281353, −3.86660223023948450224631339518, −1.75921381894034822942112914357,
1.87285061981644706703732569124, 3.23827690610814825183028813746, 4.11112295337564417213465391192, 6.10019511013137214319282695210, 7.20613461967304763150689594377, 8.643974006315674513085362176038, 8.987101739807531915825708032602, 10.29477723473473475366689341039, 10.85230268152106656920112700343, 12.29535128930376558868813928854