L(s) = 1 | + (0.258 − 0.965i)2-s + (1.41 + 0.997i)3-s + (−0.866 − 0.499i)4-s + (0.175 − 0.653i)5-s + (1.33 − 1.10i)6-s + (2.85 + 2.85i)7-s + (−0.707 + 0.707i)8-s + (1.00 + 2.82i)9-s + (−0.585 − 0.338i)10-s + (−0.686 − 0.183i)11-s + (−0.726 − 1.57i)12-s + (−1.25 − 3.37i)13-s + (3.49 − 2.01i)14-s + (0.899 − 0.749i)15-s + (0.500 + 0.866i)16-s + (−3.24 − 5.61i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (0.817 + 0.576i)3-s + (−0.433 − 0.249i)4-s + (0.0782 − 0.292i)5-s + (0.543 − 0.452i)6-s + (1.07 + 1.07i)7-s + (−0.249 + 0.249i)8-s + (0.336 + 0.941i)9-s + (−0.185 − 0.106i)10-s + (−0.206 − 0.0554i)11-s + (−0.209 − 0.453i)12-s + (−0.348 − 0.937i)13-s + (0.934 − 0.539i)14-s + (0.232 − 0.193i)15-s + (0.125 + 0.216i)16-s + (−0.786 − 1.36i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.955 + 0.295i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.955 + 0.295i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72339 - 0.260457i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72339 - 0.260457i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (-1.41 - 0.997i)T \) |
| 13 | \( 1 + (1.25 + 3.37i)T \) |
good | 5 | \( 1 + (-0.175 + 0.653i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.85 - 2.85i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.686 + 0.183i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (3.24 + 5.61i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.253 + 0.0679i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 1.72T + 23T^{2} \) |
| 29 | \( 1 + (1.11 - 0.643i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.89 + 1.04i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (7.96 - 2.13i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (6.55 + 6.55i)T + 41iT^{2} \) |
| 43 | \( 1 - 6.55iT - 43T^{2} \) |
| 47 | \( 1 + (2.43 + 9.07i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 6.34iT - 53T^{2} \) |
| 59 | \( 1 + (-1.28 - 4.81i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 3.29T + 61T^{2} \) |
| 67 | \( 1 + (7.38 - 7.38i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.09 + 7.82i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (1.40 + 1.40i)T + 73iT^{2} \) |
| 79 | \( 1 + (-7.29 + 12.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.90 + 1.04i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-2.64 - 9.85i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.42 + 1.42i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06218718195228584119998363970, −11.15214373701501040602168481528, −10.25938295167954976180027701491, −9.052144421243428095029798329268, −8.654265551674834557687883829852, −7.44566624311209679931670124033, −5.28019681649474610472446996121, −4.85386068646394326526537338509, −3.16116900794682104682756825209, −2.07452963107968649640872375981,
1.82762826177729566007012590123, 3.72884354584657292597283471594, 4.76796265976545632686430333166, 6.52758211138307054264966857519, 7.19689901648923734766706353776, 8.142684083484718137700449080358, 8.908622866513041761111967758373, 10.25098527271833662780056202389, 11.26489596956336822168851792694, 12.55236545890629650285981386558