L(s) = 1 | + (−0.258 + 0.965i)2-s + (−1.66 − 0.491i)3-s + (−0.866 − 0.499i)4-s + (0.174 − 0.650i)5-s + (0.904 − 1.47i)6-s + (1.26 + 1.26i)7-s + (0.707 − 0.707i)8-s + (2.51 + 1.63i)9-s + (0.583 + 0.336i)10-s + (0.952 + 0.255i)11-s + (1.19 + 1.25i)12-s + (2.90 + 2.13i)13-s + (−1.55 + 0.895i)14-s + (−0.609 + 0.995i)15-s + (0.500 + 0.866i)16-s + (1.20 + 2.09i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.958 − 0.283i)3-s + (−0.433 − 0.249i)4-s + (0.0779 − 0.290i)5-s + (0.369 − 0.603i)6-s + (0.478 + 0.478i)7-s + (0.249 − 0.249i)8-s + (0.839 + 0.543i)9-s + (0.184 + 0.106i)10-s + (0.287 + 0.0769i)11-s + (0.344 + 0.362i)12-s + (0.806 + 0.591i)13-s + (−0.414 + 0.239i)14-s + (−0.157 + 0.256i)15-s + (0.125 + 0.216i)16-s + (0.293 + 0.508i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.593 - 0.804i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.593 - 0.804i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.801856 + 0.405087i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.801856 + 0.405087i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 - 0.965i)T \) |
| 3 | \( 1 + (1.66 + 0.491i)T \) |
| 13 | \( 1 + (-2.90 - 2.13i)T \) |
good | 5 | \( 1 + (-0.174 + 0.650i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.26 - 1.26i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.952 - 0.255i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-1.20 - 2.09i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.33 - 1.69i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 6.32T + 23T^{2} \) |
| 29 | \( 1 + (-3.71 + 2.14i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.59 + 1.49i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-6.83 + 1.83i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (3.51 + 3.51i)T + 41iT^{2} \) |
| 43 | \( 1 - 0.892iT - 43T^{2} \) |
| 47 | \( 1 + (0.981 + 3.66i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 - 9.00iT - 53T^{2} \) |
| 59 | \( 1 + (-1.22 - 4.56i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 4.76T + 61T^{2} \) |
| 67 | \( 1 + (7.82 - 7.82i)T - 67iT^{2} \) |
| 71 | \( 1 + (-1.70 + 6.37i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (8.01 + 8.01i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.807 - 1.39i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.31 - 1.95i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.440 - 1.64i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (1.35 - 1.35i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.16276139733076470949349985335, −11.52714693254410757419349035733, −10.38653234894539945573550586364, −9.327364027241986038781138189512, −8.236723517809699604212835029662, −7.24929569940559141662162595934, −6.07595436049210569931815717928, −5.40547813566063551618744450199, −4.13696287235694347017417079892, −1.46219059659972114719708520531,
1.11138714411019042341064930272, 3.30793063099608347642483748405, 4.57556492811170718819440203439, 5.69224037331412781789835311600, 6.97113131793891625067810721938, 8.136606244421690450385546227827, 9.513436405172821321300579755394, 10.29561147637493068926138202383, 11.13509101413752679999125516095, 11.72574862336085423533689749941