L(s) = 1 | + (−0.258 + 0.965i)2-s + (−1.66 − 0.491i)3-s + (−0.866 − 0.499i)4-s + (0.174 − 0.650i)5-s + (0.904 − 1.47i)6-s + (1.26 + 1.26i)7-s + (0.707 − 0.707i)8-s + (2.51 + 1.63i)9-s + (0.583 + 0.336i)10-s + (0.952 + 0.255i)11-s + (1.19 + 1.25i)12-s + (2.90 + 2.13i)13-s + (−1.55 + 0.895i)14-s + (−0.609 + 0.995i)15-s + (0.500 + 0.866i)16-s + (1.20 + 2.09i)17-s + ⋯ |
L(s) = 1 | + (−0.183 + 0.683i)2-s + (−0.958 − 0.283i)3-s + (−0.433 − 0.249i)4-s + (0.0779 − 0.290i)5-s + (0.369 − 0.603i)6-s + (0.478 + 0.478i)7-s + (0.249 − 0.249i)8-s + (0.839 + 0.543i)9-s + (0.184 + 0.106i)10-s + (0.287 + 0.0769i)11-s + (0.344 + 0.362i)12-s + (0.806 + 0.591i)13-s + (−0.414 + 0.239i)14-s + (−0.157 + 0.256i)15-s + (0.125 + 0.216i)16-s + (0.293 + 0.508i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.593−0.804i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.593−0.804i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.593−0.804i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.593−0.804i)
|
Particular Values
L(1) |
≈ |
0.801856+0.405087i |
L(21) |
≈ |
0.801856+0.405087i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258−0.965i)T |
| 3 | 1+(1.66+0.491i)T |
| 13 | 1+(−2.90−2.13i)T |
good | 5 | 1+(−0.174+0.650i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−1.26−1.26i)T+7iT2 |
| 11 | 1+(−0.952−0.255i)T+(9.52+5.5i)T2 |
| 17 | 1+(−1.20−2.09i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−6.33−1.69i)T+(16.4+9.5i)T2 |
| 23 | 1+6.32T+23T2 |
| 29 | 1+(−3.71+2.14i)T+(14.5−25.1i)T2 |
| 31 | 1+(5.59+1.49i)T+(26.8+15.5i)T2 |
| 37 | 1+(−6.83+1.83i)T+(32.0−18.5i)T2 |
| 41 | 1+(3.51+3.51i)T+41iT2 |
| 43 | 1−0.892iT−43T2 |
| 47 | 1+(0.981+3.66i)T+(−40.7+23.5i)T2 |
| 53 | 1−9.00iT−53T2 |
| 59 | 1+(−1.22−4.56i)T+(−51.0+29.5i)T2 |
| 61 | 1−4.76T+61T2 |
| 67 | 1+(7.82−7.82i)T−67iT2 |
| 71 | 1+(−1.70+6.37i)T+(−61.4−35.5i)T2 |
| 73 | 1+(8.01+8.01i)T+73iT2 |
| 79 | 1+(0.807−1.39i)T+(−39.5−68.4i)T2 |
| 83 | 1+(7.31−1.95i)T+(71.8−41.5i)T2 |
| 89 | 1+(−0.440−1.64i)T+(−77.0+44.5i)T2 |
| 97 | 1+(1.35−1.35i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.16276139733076470949349985335, −11.52714693254410757419349035733, −10.38653234894539945573550586364, −9.327364027241986038781138189512, −8.236723517809699604212835029662, −7.24929569940559141662162595934, −6.07595436049210569931815717928, −5.40547813566063551618744450199, −4.13696287235694347017417079892, −1.46219059659972114719708520531,
1.11138714411019042341064930272, 3.30793063099608347642483748405, 4.57556492811170718819440203439, 5.69224037331412781789835311600, 6.97113131793891625067810721938, 8.136606244421690450385546227827, 9.513436405172821321300579755394, 10.29561147637493068926138202383, 11.13509101413752679999125516095, 11.72574862336085423533689749941