L(s) = 1 | + (0.258 − 0.965i)2-s + (−1.22 − 1.22i)3-s + (−0.866 − 0.499i)4-s + (1.02 − 3.83i)5-s + (−1.50 + 0.862i)6-s + (1.13 + 1.13i)7-s + (−0.707 + 0.707i)8-s + (−0.0126 + 2.99i)9-s + (−3.43 − 1.98i)10-s + (−4.79 − 1.28i)11-s + (0.444 + 1.67i)12-s + (3.50 + 0.826i)13-s + (1.39 − 0.803i)14-s + (−5.95 + 3.42i)15-s + (0.500 + 0.866i)16-s + (−0.584 − 1.01i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.705 − 0.708i)3-s + (−0.433 − 0.249i)4-s + (0.459 − 1.71i)5-s + (−0.613 + 0.352i)6-s + (0.429 + 0.429i)7-s + (−0.249 + 0.249i)8-s + (−0.00423 + 0.999i)9-s + (−1.08 − 0.627i)10-s + (−1.44 − 0.387i)11-s + (0.128 + 0.483i)12-s + (0.973 + 0.229i)13-s + (0.371 − 0.214i)14-s + (−1.53 + 0.883i)15-s + (0.125 + 0.216i)16-s + (−0.141 − 0.245i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.943+0.330i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.943+0.330i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.943+0.330i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.943+0.330i)
|
Particular Values
L(1) |
≈ |
0.171636−1.00970i |
L(21) |
≈ |
0.171636−1.00970i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258+0.965i)T |
| 3 | 1+(1.22+1.22i)T |
| 13 | 1+(−3.50−0.826i)T |
good | 5 | 1+(−1.02+3.83i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−1.13−1.13i)T+7iT2 |
| 11 | 1+(4.79+1.28i)T+(9.52+5.5i)T2 |
| 17 | 1+(0.584+1.01i)T+(−8.5+14.7i)T2 |
| 19 | 1+(4.16+1.11i)T+(16.4+9.5i)T2 |
| 23 | 1−3.26T+23T2 |
| 29 | 1+(−6.50+3.75i)T+(14.5−25.1i)T2 |
| 31 | 1+(−7.25−1.94i)T+(26.8+15.5i)T2 |
| 37 | 1+(4.28−1.14i)T+(32.0−18.5i)T2 |
| 41 | 1+(−3.96−3.96i)T+41iT2 |
| 43 | 1−0.889iT−43T2 |
| 47 | 1+(−0.653−2.43i)T+(−40.7+23.5i)T2 |
| 53 | 1+6.60iT−53T2 |
| 59 | 1+(2.12+7.94i)T+(−51.0+29.5i)T2 |
| 61 | 1−14.1T+61T2 |
| 67 | 1+(−2.33+2.33i)T−67iT2 |
| 71 | 1+(0.942−3.51i)T+(−61.4−35.5i)T2 |
| 73 | 1+(3.33+3.33i)T+73iT2 |
| 79 | 1+(1.16−2.02i)T+(−39.5−68.4i)T2 |
| 83 | 1+(10.5−2.82i)T+(71.8−41.5i)T2 |
| 89 | 1+(−1.78−6.65i)T+(−77.0+44.5i)T2 |
| 97 | 1+(4.52−4.52i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.86436049430502714073475129430, −11.04039771829205781906936585022, −9.999543171211348060917981239790, −8.538636750451539453689116783615, −8.274637000525684924458017045023, −6.29191461329450677152164335018, −5.25864331749796268954659293958, −4.67726967370277872977054707026, −2.30219047117469223151515463721, −0.906112113735969767480484395294,
2.92828853269556760051384227960, 4.29992620083932690138460538484, 5.58628938669139488601429362044, 6.44628196813613205479982037323, 7.32411883871353106782419090098, 8.583885237002034899044042260597, 10.25109982947113481202887633705, 10.45309831808155778528269567741, 11.29036485697885812888988789850, 12.72278892416242944694038509669