L(s) = 1 | + (0.258 − 0.965i)2-s + (1.71 + 0.208i)3-s + (−0.866 − 0.499i)4-s + (0.406 − 1.51i)5-s + (0.646 − 1.60i)6-s + (−3.31 − 3.31i)7-s + (−0.707 + 0.707i)8-s + (2.91 + 0.718i)9-s + (−1.36 − 0.785i)10-s + (−1.47 − 0.395i)11-s + (−1.38 − 1.04i)12-s + (3.50 + 0.853i)13-s + (−4.05 + 2.34i)14-s + (1.01 − 2.52i)15-s + (0.500 + 0.866i)16-s + (2.99 + 5.18i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (0.992 + 0.120i)3-s + (−0.433 − 0.249i)4-s + (0.181 − 0.678i)5-s + (0.264 − 0.655i)6-s + (−1.25 − 1.25i)7-s + (−0.249 + 0.249i)8-s + (0.970 + 0.239i)9-s + (−0.430 − 0.248i)10-s + (−0.445 − 0.119i)11-s + (−0.399 − 0.300i)12-s + (0.971 + 0.236i)13-s + (−1.08 + 0.626i)14-s + (0.262 − 0.651i)15-s + (0.125 + 0.216i)16-s + (0.725 + 1.25i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0914 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0914 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21566 - 1.10911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21566 - 1.10911i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (-1.71 - 0.208i)T \) |
| 13 | \( 1 + (-3.50 - 0.853i)T \) |
good | 5 | \( 1 + (-0.406 + 1.51i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (3.31 + 3.31i)T + 7iT^{2} \) |
| 11 | \( 1 + (1.47 + 0.395i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-2.99 - 5.18i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.70 - 1.52i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 4.97T + 23T^{2} \) |
| 29 | \( 1 + (5.94 - 3.43i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.01 - 0.271i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (6.94 - 1.86i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (3.66 + 3.66i)T + 41iT^{2} \) |
| 43 | \( 1 + 12.2iT - 43T^{2} \) |
| 47 | \( 1 + (-1.64 - 6.14i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 2.78iT - 53T^{2} \) |
| 59 | \( 1 + (-1.54 - 5.76i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 4.37T + 61T^{2} \) |
| 67 | \( 1 + (-3.96 + 3.96i)T - 67iT^{2} \) |
| 71 | \( 1 + (0.0745 - 0.278i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.964 - 0.964i)T + 73iT^{2} \) |
| 79 | \( 1 + (0.0673 - 0.116i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (11.2 - 3.00i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (1.46 + 5.45i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (4.71 - 4.71i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27936144535218744328192941694, −10.62806658488448450981329696087, −10.09156833217167157529909038259, −9.204800569986487588175611559687, −8.227905205967869010422969489783, −7.06186618148774000583044551447, −5.56314352078114110706706148966, −3.88858975795369111121624779843, −3.42287270145729047395033016287, −1.41889348162327999401376958270,
2.70909476653849312932305038513, 3.46056925315022265597811986672, 5.39948396619920582191676626873, 6.41485072025295394748270518274, 7.37800616515877409192310973188, 8.425484161705222946086331772544, 9.462106898541380580068101404513, 9.957878463539164623777835711625, 11.68509967343838973134487855674, 12.70668631654421638202655594730