L(s) = 1 | + (0.258 − 0.965i)2-s + (−1.53 − 0.810i)3-s + (−0.866 − 0.499i)4-s + (−0.970 + 3.62i)5-s + (−1.17 + 1.26i)6-s + (2.29 + 2.29i)7-s + (−0.707 + 0.707i)8-s + (1.68 + 2.48i)9-s + (3.24 + 1.87i)10-s + (−2.11 − 0.566i)11-s + (0.920 + 1.46i)12-s + (−3.26 − 1.53i)13-s + (2.81 − 1.62i)14-s + (4.42 − 4.75i)15-s + (0.500 + 0.866i)16-s + (3.50 + 6.07i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.883 − 0.467i)3-s + (−0.433 − 0.249i)4-s + (−0.433 + 1.61i)5-s + (−0.481 + 0.517i)6-s + (0.868 + 0.868i)7-s + (−0.249 + 0.249i)8-s + (0.562 + 0.827i)9-s + (1.02 + 0.592i)10-s + (−0.637 − 0.170i)11-s + (0.265 + 0.423i)12-s + (−0.905 − 0.424i)13-s + (0.751 − 0.434i)14-s + (1.14 − 1.22i)15-s + (0.125 + 0.216i)16-s + (0.850 + 1.47i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.744−0.667i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.744−0.667i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.744−0.667i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(227,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.744−0.667i)
|
Particular Values
L(1) |
≈ |
0.777370+0.297235i |
L(21) |
≈ |
0.777370+0.297235i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.258+0.965i)T |
| 3 | 1+(1.53+0.810i)T |
| 13 | 1+(3.26+1.53i)T |
good | 5 | 1+(0.970−3.62i)T+(−4.33−2.5i)T2 |
| 7 | 1+(−2.29−2.29i)T+7iT2 |
| 11 | 1+(2.11+0.566i)T+(9.52+5.5i)T2 |
| 17 | 1+(−3.50−6.07i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−4.70−1.26i)T+(16.4+9.5i)T2 |
| 23 | 1−0.831T+23T2 |
| 29 | 1+(8.02−4.63i)T+(14.5−25.1i)T2 |
| 31 | 1+(−0.527−0.141i)T+(26.8+15.5i)T2 |
| 37 | 1+(−1.90+0.509i)T+(32.0−18.5i)T2 |
| 41 | 1+(1.24+1.24i)T+41iT2 |
| 43 | 1+0.0581iT−43T2 |
| 47 | 1+(−1.56−5.83i)T+(−40.7+23.5i)T2 |
| 53 | 1+1.62iT−53T2 |
| 59 | 1+(0.755+2.81i)T+(−51.0+29.5i)T2 |
| 61 | 1−3.57T+61T2 |
| 67 | 1+(−9.19+9.19i)T−67iT2 |
| 71 | 1+(−2.31+8.65i)T+(−61.4−35.5i)T2 |
| 73 | 1+(−3.38−3.38i)T+73iT2 |
| 79 | 1+(5.86−10.1i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−14.0+3.75i)T+(71.8−41.5i)T2 |
| 89 | 1+(3.50+13.0i)T+(−77.0+44.5i)T2 |
| 97 | 1+(−6.97+6.97i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11512764616403679113706288537, −11.27418521074512839893744123626, −10.74330238637134024113342888274, −9.891155937347618547172116800356, −8.044173267666069847945870484700, −7.37324409416045714094078156030, −5.94876355439971739593482235685, −5.15184951345527431312151920047, −3.37808122360749591924476698695, −2.05789489265320849202748438986,
0.74559027121493917260602139422, 4.06883363584553074411071308856, 5.02209291776911377597755338632, 5.30811500796894446661582709341, 7.26248647746236258255433848750, 7.80798372938560600837692037253, 9.222755105277459584260203440069, 9.912782656054874433429330366167, 11.44733082099355310536843325734, 11.95779340420232499485124719877