L(s) = 1 | + (0.258 − 0.965i)2-s + (−1.53 − 0.810i)3-s + (−0.866 − 0.499i)4-s + (−0.970 + 3.62i)5-s + (−1.17 + 1.26i)6-s + (2.29 + 2.29i)7-s + (−0.707 + 0.707i)8-s + (1.68 + 2.48i)9-s + (3.24 + 1.87i)10-s + (−2.11 − 0.566i)11-s + (0.920 + 1.46i)12-s + (−3.26 − 1.53i)13-s + (2.81 − 1.62i)14-s + (4.42 − 4.75i)15-s + (0.500 + 0.866i)16-s + (3.50 + 6.07i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.883 − 0.467i)3-s + (−0.433 − 0.249i)4-s + (−0.433 + 1.61i)5-s + (−0.481 + 0.517i)6-s + (0.868 + 0.868i)7-s + (−0.249 + 0.249i)8-s + (0.562 + 0.827i)9-s + (1.02 + 0.592i)10-s + (−0.637 − 0.170i)11-s + (0.265 + 0.423i)12-s + (−0.905 − 0.424i)13-s + (0.751 − 0.434i)14-s + (1.14 − 1.22i)15-s + (0.125 + 0.216i)16-s + (0.850 + 1.47i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.744 - 0.667i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.744 - 0.667i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.777370 + 0.297235i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.777370 + 0.297235i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (1.53 + 0.810i)T \) |
| 13 | \( 1 + (3.26 + 1.53i)T \) |
good | 5 | \( 1 + (0.970 - 3.62i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-2.29 - 2.29i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.11 + 0.566i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (-3.50 - 6.07i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.70 - 1.26i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 - 0.831T + 23T^{2} \) |
| 29 | \( 1 + (8.02 - 4.63i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.527 - 0.141i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.90 + 0.509i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (1.24 + 1.24i)T + 41iT^{2} \) |
| 43 | \( 1 + 0.0581iT - 43T^{2} \) |
| 47 | \( 1 + (-1.56 - 5.83i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + 1.62iT - 53T^{2} \) |
| 59 | \( 1 + (0.755 + 2.81i)T + (-51.0 + 29.5i)T^{2} \) |
| 61 | \( 1 - 3.57T + 61T^{2} \) |
| 67 | \( 1 + (-9.19 + 9.19i)T - 67iT^{2} \) |
| 71 | \( 1 + (-2.31 + 8.65i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-3.38 - 3.38i)T + 73iT^{2} \) |
| 79 | \( 1 + (5.86 - 10.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-14.0 + 3.75i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + (3.50 + 13.0i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-6.97 + 6.97i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11512764616403679113706288537, −11.27418521074512839893744123626, −10.74330238637134024113342888274, −9.891155937347618547172116800356, −8.044173267666069847945870484700, −7.37324409416045714094078156030, −5.94876355439971739593482235685, −5.15184951345527431312151920047, −3.37808122360749591924476698695, −2.05789489265320849202748438986,
0.74559027121493917260602139422, 4.06883363584553074411071308856, 5.02209291776911377597755338632, 5.30811500796894446661582709341, 7.26248647746236258255433848750, 7.80798372938560600837692037253, 9.222755105277459584260203440069, 9.912782656054874433429330366167, 11.44733082099355310536843325734, 11.95779340420232499485124719877