L(s) = 1 | + (0.707 − 0.707i)2-s + (1.04 + 1.38i)3-s − 1.00i·4-s + (1.62 + 0.435i)5-s + (1.71 + 0.239i)6-s + (0.290 + 0.0778i)7-s + (−0.707 − 0.707i)8-s + (−0.823 + 2.88i)9-s + (1.45 − 0.842i)10-s + (−1.12 − 1.12i)11-s + (1.38 − 1.04i)12-s + (−3.56 + 0.535i)13-s + (0.260 − 0.150i)14-s + (1.09 + 2.70i)15-s − 1.00·16-s + (1.26 − 2.19i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.602 + 0.798i)3-s − 0.500i·4-s + (0.727 + 0.194i)5-s + (0.700 + 0.0979i)6-s + (0.109 + 0.0294i)7-s + (−0.250 − 0.250i)8-s + (−0.274 + 0.961i)9-s + (0.461 − 0.266i)10-s + (−0.338 − 0.338i)11-s + (0.399 − 0.301i)12-s + (−0.988 + 0.148i)13-s + (0.0695 − 0.0401i)14-s + (0.282 + 0.698i)15-s − 0.250·16-s + (0.306 − 0.531i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.999+0.00318i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.999+0.00318i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.999+0.00318i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.999+0.00318i)
|
Particular Values
L(1) |
≈ |
1.96814−0.00313531i |
L(21) |
≈ |
1.96814−0.00313531i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707+0.707i)T |
| 3 | 1+(−1.04−1.38i)T |
| 13 | 1+(3.56−0.535i)T |
good | 5 | 1+(−1.62−0.435i)T+(4.33+2.5i)T2 |
| 7 | 1+(−0.290−0.0778i)T+(6.06+3.5i)T2 |
| 11 | 1+(1.12+1.12i)T+11iT2 |
| 17 | 1+(−1.26+2.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.16+1.11i)T+(16.4−9.5i)T2 |
| 23 | 1+(−0.660+1.14i)T+(−11.5−19.9i)T2 |
| 29 | 1+7.48iT−29T2 |
| 31 | 1+(2.78−10.3i)T+(−26.8−15.5i)T2 |
| 37 | 1+(2.37+0.637i)T+(32.0+18.5i)T2 |
| 41 | 1+(0.974+3.63i)T+(−35.5+20.5i)T2 |
| 43 | 1+(6.42−3.71i)T+(21.5−37.2i)T2 |
| 47 | 1+(−3.46+0.928i)T+(40.7−23.5i)T2 |
| 53 | 1+3.63iT−53T2 |
| 59 | 1+(0.512+0.512i)T+59iT2 |
| 61 | 1+(−5.62−9.74i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.943+0.252i)T+(58.0−33.5i)T2 |
| 71 | 1+(−1.84−6.87i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−3.38+3.38i)T−73iT2 |
| 79 | 1+(3.69−6.40i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−3.18−11.8i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−0.512+1.91i)T+(−77.0−44.5i)T2 |
| 97 | 1+(−1.61+6.03i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.11926803777674997458921961354, −11.15418307685596137797455191491, −10.05838192456401830355379886850, −9.684760633555167842728248708199, −8.484453771274822053027588808554, −7.14812636656392350548905432744, −5.57199187672814893662138666699, −4.79740141989474723611141602081, −3.32405194246256856200931135975, −2.26923340773432529639157721304,
1.94937650911063441004162488364, 3.37275696966261501684719689553, 5.07510136385105224678174325053, 6.05335940384379495364720069256, 7.26964467323812310588730079212, 7.907770267205417785828651647595, 9.162473658565570833446347925999, 9.985529000715378818356131594002, 11.58330786422956916931153828857, 12.55344430245041206394042988818