L(s) = 1 | + (0.707 − 0.707i)2-s + (1.04 + 1.38i)3-s − 1.00i·4-s + (1.62 + 0.435i)5-s + (1.71 + 0.239i)6-s + (0.290 + 0.0778i)7-s + (−0.707 − 0.707i)8-s + (−0.823 + 2.88i)9-s + (1.45 − 0.842i)10-s + (−1.12 − 1.12i)11-s + (1.38 − 1.04i)12-s + (−3.56 + 0.535i)13-s + (0.260 − 0.150i)14-s + (1.09 + 2.70i)15-s − 1.00·16-s + (1.26 − 2.19i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.602 + 0.798i)3-s − 0.500i·4-s + (0.727 + 0.194i)5-s + (0.700 + 0.0979i)6-s + (0.109 + 0.0294i)7-s + (−0.250 − 0.250i)8-s + (−0.274 + 0.961i)9-s + (0.461 − 0.266i)10-s + (−0.338 − 0.338i)11-s + (0.399 − 0.301i)12-s + (−0.988 + 0.148i)13-s + (0.0695 − 0.0401i)14-s + (0.282 + 0.698i)15-s − 0.250·16-s + (0.306 − 0.531i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00318i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.96814 - 0.00313531i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.96814 - 0.00313531i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.04 - 1.38i)T \) |
| 13 | \( 1 + (3.56 - 0.535i)T \) |
good | 5 | \( 1 + (-1.62 - 0.435i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.290 - 0.0778i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.12 + 1.12i)T + 11iT^{2} \) |
| 17 | \( 1 + (-1.26 + 2.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.16 + 1.11i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.660 + 1.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 7.48iT - 29T^{2} \) |
| 31 | \( 1 + (2.78 - 10.3i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (2.37 + 0.637i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (0.974 + 3.63i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (6.42 - 3.71i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.46 + 0.928i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 3.63iT - 53T^{2} \) |
| 59 | \( 1 + (0.512 + 0.512i)T + 59iT^{2} \) |
| 61 | \( 1 + (-5.62 - 9.74i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.943 + 0.252i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.84 - 6.87i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-3.38 + 3.38i)T - 73iT^{2} \) |
| 79 | \( 1 + (3.69 - 6.40i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.18 - 11.8i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.512 + 1.91i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.61 + 6.03i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11926803777674997458921961354, −11.15418307685596137797455191491, −10.05838192456401830355379886850, −9.684760633555167842728248708199, −8.484453771274822053027588808554, −7.14812636656392350548905432744, −5.57199187672814893662138666699, −4.79740141989474723611141602081, −3.32405194246256856200931135975, −2.26923340773432529639157721304,
1.94937650911063441004162488364, 3.37275696966261501684719689553, 5.07510136385105224678174325053, 6.05335940384379495364720069256, 7.26964467323812310588730079212, 7.907770267205417785828651647595, 9.162473658565570833446347925999, 9.985529000715378818356131594002, 11.58330786422956916931153828857, 12.55344430245041206394042988818