L(s) = 1 | + (−0.707 + 0.707i)2-s + (0.0694 − 1.73i)3-s − 1.00i·4-s + (0.339 + 0.0908i)5-s + (1.17 + 1.27i)6-s + (2.97 + 0.797i)7-s + (0.707 + 0.707i)8-s + (−2.99 − 0.240i)9-s + (−0.304 + 0.175i)10-s + (−2.35 − 2.35i)11-s + (−1.73 − 0.0694i)12-s + (2.60 − 2.49i)13-s + (−2.66 + 1.54i)14-s + (0.180 − 0.580i)15-s − 1.00·16-s + (3.87 − 6.71i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.0401 − 0.999i)3-s − 0.500i·4-s + (0.151 + 0.0406i)5-s + (0.479 + 0.519i)6-s + (1.12 + 0.301i)7-s + (0.250 + 0.250i)8-s + (−0.996 − 0.0801i)9-s + (−0.0961 + 0.0555i)10-s + (−0.709 − 0.709i)11-s + (−0.499 − 0.0200i)12-s + (0.723 − 0.690i)13-s + (−0.713 + 0.411i)14-s + (0.0466 − 0.149i)15-s − 0.250·16-s + (0.940 − 1.62i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(0.722+0.690i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(0.722+0.690i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
0.722+0.690i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), 0.722+0.690i)
|
Particular Values
L(1) |
≈ |
0.981433−0.393538i |
L(21) |
≈ |
0.981433−0.393538i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(−0.0694+1.73i)T |
| 13 | 1+(−2.60+2.49i)T |
good | 5 | 1+(−0.339−0.0908i)T+(4.33+2.5i)T2 |
| 7 | 1+(−2.97−0.797i)T+(6.06+3.5i)T2 |
| 11 | 1+(2.35+2.35i)T+11iT2 |
| 17 | 1+(−3.87+6.71i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.67+0.984i)T+(16.4−9.5i)T2 |
| 23 | 1+(3.34−5.78i)T+(−11.5−19.9i)T2 |
| 29 | 1−5.68iT−29T2 |
| 31 | 1+(−0.293+1.09i)T+(−26.8−15.5i)T2 |
| 37 | 1+(−8.90−2.38i)T+(32.0+18.5i)T2 |
| 41 | 1+(0.678+2.53i)T+(−35.5+20.5i)T2 |
| 43 | 1+(3.68−2.12i)T+(21.5−37.2i)T2 |
| 47 | 1+(4.17−1.11i)T+(40.7−23.5i)T2 |
| 53 | 1−5.65iT−53T2 |
| 59 | 1+(−7.75−7.75i)T+59iT2 |
| 61 | 1+(−5.01−8.69i)T+(−30.5+52.8i)T2 |
| 67 | 1+(13.3−3.56i)T+(58.0−33.5i)T2 |
| 71 | 1+(0.343+1.28i)T+(−61.4+35.5i)T2 |
| 73 | 1+(2.19−2.19i)T−73iT2 |
| 79 | 1+(6.22−10.7i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.05+3.92i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−1.43+5.37i)T+(−77.0−44.5i)T2 |
| 97 | 1+(0.218−0.816i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.74949749556696619988535725520, −11.37421569241112146358106105944, −10.02924676429996962181384901750, −8.797401747953847486025448554195, −7.894708346886868507407386716618, −7.43179512899532234650275246483, −5.84885788169194129072004235177, −5.29919743853389043924522807686, −2.88979734604609203307264607820, −1.17567566163927208183146700977,
1.91794542094610249724133875585, 3.72040521366786854538156840335, 4.68263123457604629382979297304, 5.98956188273790638995093170146, 7.86592002634925933768310759044, 8.349143827319299241181797441990, 9.696440507944400960851338306644, 10.27522809827002439799011942449, 11.17243184754610966682383352164, 11.90753967382359902090061691030