L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.04 + 1.38i)3-s − 1.00i·4-s + (1.51 + 0.406i)5-s + (−0.243 − 1.71i)6-s + (4.52 + 1.21i)7-s + (0.707 + 0.707i)8-s + (−0.834 − 2.88i)9-s + (−1.36 + 0.785i)10-s + (−1.08 − 1.08i)11-s + (1.38 + 1.04i)12-s + (−1.01 + 3.46i)13-s + (−4.05 + 2.34i)14-s + (−2.14 + 1.67i)15-s − 1.00·16-s + (−2.99 + 5.18i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.600 + 0.799i)3-s − 0.500i·4-s + (0.678 + 0.181i)5-s + (−0.0993 − 0.700i)6-s + (1.71 + 0.458i)7-s + (0.250 + 0.250i)8-s + (−0.278 − 0.960i)9-s + (−0.430 + 0.248i)10-s + (−0.326 − 0.326i)11-s + (0.399 + 0.300i)12-s + (−0.280 + 0.959i)13-s + (−1.08 + 0.626i)14-s + (−0.552 + 0.433i)15-s − 0.250·16-s + (−0.725 + 1.25i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.122 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.122 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.651392 + 0.736894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.651392 + 0.736894i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (1.04 - 1.38i)T \) |
| 13 | \( 1 + (1.01 - 3.46i)T \) |
good | 5 | \( 1 + (-1.51 - 0.406i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-4.52 - 1.21i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.08 + 1.08i)T + 11iT^{2} \) |
| 17 | \( 1 + (2.99 - 5.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.70 + 1.52i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (2.48 - 4.30i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.86iT - 29T^{2} \) |
| 31 | \( 1 + (0.271 - 1.01i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (6.94 + 1.86i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.34 - 5.00i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-10.6 + 6.12i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.14 + 1.64i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 2.78iT - 53T^{2} \) |
| 59 | \( 1 + (4.22 + 4.22i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.18 + 3.78i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.41 - 1.45i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.0745 - 0.278i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-0.964 + 0.964i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.0673 - 0.116i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.00 + 11.2i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-1.46 + 5.45i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (1.72 - 6.44i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97898780026842100518530102154, −11.30866747513275190443572961755, −10.49889250289969143507377803743, −9.482942756561868129415388615955, −8.665519260380290080244542803938, −7.54921427566294499930724601645, −6.08440909848499261128061119431, −5.37815506349575705795303924486, −4.29237360266272092147884442672, −1.91026515153173549653959407435,
1.16800219606034841704185782218, 2.41708590897414193419382295711, 4.76003520928271690539308840980, 5.55910925573866853985781879658, 7.29627203475762711189539078400, 7.76897684586577307551295440983, 8.959853539289331088610048337530, 10.29745239419458163420899745180, 10.95541718596267555237442021920, 11.84098939060121549316915878155