L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.04 + 1.38i)3-s − 1.00i·4-s + (1.51 + 0.406i)5-s + (−0.243 − 1.71i)6-s + (4.52 + 1.21i)7-s + (0.707 + 0.707i)8-s + (−0.834 − 2.88i)9-s + (−1.36 + 0.785i)10-s + (−1.08 − 1.08i)11-s + (1.38 + 1.04i)12-s + (−1.01 + 3.46i)13-s + (−4.05 + 2.34i)14-s + (−2.14 + 1.67i)15-s − 1.00·16-s + (−2.99 + 5.18i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.600 + 0.799i)3-s − 0.500i·4-s + (0.678 + 0.181i)5-s + (−0.0993 − 0.700i)6-s + (1.71 + 0.458i)7-s + (0.250 + 0.250i)8-s + (−0.278 − 0.960i)9-s + (−0.430 + 0.248i)10-s + (−0.326 − 0.326i)11-s + (0.399 + 0.300i)12-s + (−0.280 + 0.959i)13-s + (−1.08 + 0.626i)14-s + (−0.552 + 0.433i)15-s − 0.250·16-s + (−0.725 + 1.25i)17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.122−0.992i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.122−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.122−0.992i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.122−0.992i)
|
Particular Values
L(1) |
≈ |
0.651392+0.736894i |
L(21) |
≈ |
0.651392+0.736894i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(1.04−1.38i)T |
| 13 | 1+(1.01−3.46i)T |
good | 5 | 1+(−1.51−0.406i)T+(4.33+2.5i)T2 |
| 7 | 1+(−4.52−1.21i)T+(6.06+3.5i)T2 |
| 11 | 1+(1.08+1.08i)T+11iT2 |
| 17 | 1+(2.99−5.18i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−5.70+1.52i)T+(16.4−9.5i)T2 |
| 23 | 1+(2.48−4.30i)T+(−11.5−19.9i)T2 |
| 29 | 1+6.86iT−29T2 |
| 31 | 1+(0.271−1.01i)T+(−26.8−15.5i)T2 |
| 37 | 1+(6.94+1.86i)T+(32.0+18.5i)T2 |
| 41 | 1+(−1.34−5.00i)T+(−35.5+20.5i)T2 |
| 43 | 1+(−10.6+6.12i)T+(21.5−37.2i)T2 |
| 47 | 1+(−6.14+1.64i)T+(40.7−23.5i)T2 |
| 53 | 1+2.78iT−53T2 |
| 59 | 1+(4.22+4.22i)T+59iT2 |
| 61 | 1+(2.18+3.78i)T+(−30.5+52.8i)T2 |
| 67 | 1+(5.41−1.45i)T+(58.0−33.5i)T2 |
| 71 | 1+(−0.0745−0.278i)T+(−61.4+35.5i)T2 |
| 73 | 1+(−0.964+0.964i)T−73iT2 |
| 79 | 1+(0.0673−0.116i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.00+11.2i)T+(−71.8+41.5i)T2 |
| 89 | 1+(−1.46+5.45i)T+(−77.0−44.5i)T2 |
| 97 | 1+(1.72−6.44i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97898780026842100518530102154, −11.30866747513275190443572961755, −10.49889250289969143507377803743, −9.482942756561868129415388615955, −8.665519260380290080244542803938, −7.54921427566294499930724601645, −6.08440909848499261128061119431, −5.37815506349575705795303924486, −4.29237360266272092147884442672, −1.91026515153173549653959407435,
1.16800219606034841704185782218, 2.41708590897414193419382295711, 4.76003520928271690539308840980, 5.55910925573866853985781879658, 7.29627203475762711189539078400, 7.76897684586577307551295440983, 8.959853539289331088610048337530, 10.29745239419458163420899745180, 10.95541718596267555237442021920, 11.84098939060121549316915878155