Properties

Label 2-234-117.103-c1-0-9
Degree 22
Conductor 234234
Sign 0.973+0.227i0.973 + 0.227i
Analytic cond. 1.868491.86849
Root an. cond. 1.366931.36693
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (1.66 + 0.480i)3-s + (0.499 − 0.866i)4-s + (0.515 + 0.297i)5-s + (1.68 − 0.416i)6-s + (−1.45 + 0.838i)7-s − 0.999i·8-s + (2.53 + 1.59i)9-s + 0.594·10-s + (−0.416 + 0.240i)11-s + (1.24 − 1.20i)12-s + (−2.27 − 2.79i)13-s + (−0.838 + 1.45i)14-s + (0.714 + 0.742i)15-s + (−0.5 − 0.866i)16-s − 2.09·17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.960 + 0.277i)3-s + (0.249 − 0.433i)4-s + (0.230 + 0.132i)5-s + (0.686 − 0.169i)6-s + (−0.548 + 0.316i)7-s − 0.353i·8-s + (0.846 + 0.532i)9-s + 0.188·10-s + (−0.125 + 0.0724i)11-s + (0.360 − 0.346i)12-s + (−0.630 − 0.776i)13-s + (−0.224 + 0.388i)14-s + (0.184 + 0.191i)15-s + (−0.125 − 0.216i)16-s − 0.507·17-s + ⋯

Functional equation

Λ(s)=(234s/2ΓC(s)L(s)=((0.973+0.227i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(234s/2ΓC(s+1/2)L(s)=((0.973+0.227i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 234234    =    232132 \cdot 3^{2} \cdot 13
Sign: 0.973+0.227i0.973 + 0.227i
Analytic conductor: 1.868491.86849
Root analytic conductor: 1.366931.36693
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ234(103,)\chi_{234} (103, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 234, ( :1/2), 0.973+0.227i)(2,\ 234,\ (\ :1/2),\ 0.973 + 0.227i)

Particular Values

L(1)L(1) \approx 2.138550.246526i2.13855 - 0.246526i
L(12)L(\frac12) \approx 2.138550.246526i2.13855 - 0.246526i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
3 1+(1.660.480i)T 1 + (-1.66 - 0.480i)T
13 1+(2.27+2.79i)T 1 + (2.27 + 2.79i)T
good5 1+(0.5150.297i)T+(2.5+4.33i)T2 1 + (-0.515 - 0.297i)T + (2.5 + 4.33i)T^{2}
7 1+(1.450.838i)T+(3.56.06i)T2 1 + (1.45 - 0.838i)T + (3.5 - 6.06i)T^{2}
11 1+(0.4160.240i)T+(5.59.52i)T2 1 + (0.416 - 0.240i)T + (5.5 - 9.52i)T^{2}
17 1+2.09T+17T2 1 + 2.09T + 17T^{2}
19 1+0.480iT19T2 1 + 0.480iT - 19T^{2}
23 1+(1.833.17i)T+(11.519.9i)T2 1 + (1.83 - 3.17i)T + (-11.5 - 19.9i)T^{2}
29 1+(1.232.13i)T+(14.5+25.1i)T2 1 + (-1.23 - 2.13i)T + (-14.5 + 25.1i)T^{2}
31 1+(0.993+0.573i)T+(15.5+26.8i)T2 1 + (0.993 + 0.573i)T + (15.5 + 26.8i)T^{2}
37 1+3.65iT37T2 1 + 3.65iT - 37T^{2}
41 1+(8.584.95i)T+(20.5+35.5i)T2 1 + (-8.58 - 4.95i)T + (20.5 + 35.5i)T^{2}
43 1+(3.45+5.98i)T+(21.5+37.2i)T2 1 + (3.45 + 5.98i)T + (-21.5 + 37.2i)T^{2}
47 1+(5.403.12i)T+(23.540.7i)T2 1 + (5.40 - 3.12i)T + (23.5 - 40.7i)T^{2}
53 1+5.08T+53T2 1 + 5.08T + 53T^{2}
59 1+(8.134.69i)T+(29.5+51.0i)T2 1 + (-8.13 - 4.69i)T + (29.5 + 51.0i)T^{2}
61 1+(3.90+6.76i)T+(30.5+52.8i)T2 1 + (3.90 + 6.76i)T + (-30.5 + 52.8i)T^{2}
67 1+(12.47.19i)T+(33.5+58.0i)T2 1 + (-12.4 - 7.19i)T + (33.5 + 58.0i)T^{2}
71 16.51iT71T2 1 - 6.51iT - 71T^{2}
73 1+5.91iT73T2 1 + 5.91iT - 73T^{2}
79 1+(1.021.78i)T+(39.5+68.4i)T2 1 + (-1.02 - 1.78i)T + (-39.5 + 68.4i)T^{2}
83 1+(9.575.53i)T+(41.571.8i)T2 1 + (9.57 - 5.53i)T + (41.5 - 71.8i)T^{2}
89 1+9.48iT89T2 1 + 9.48iT - 89T^{2}
97 1+(8.41+4.85i)T+(48.584.0i)T2 1 + (-8.41 + 4.85i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.48235566612562226359361744002, −11.14959010777295727765195358777, −10.06733077209014353526528237174, −9.501276667028101183915521040867, −8.261227116370834689915837650831, −7.12834929686288526865171161808, −5.82102592374527322777891613318, −4.54936170535268934751209010602, −3.27195241860241752466794980364, −2.26076031267130636164631320936, 2.20041243820958489385173564026, 3.56344703688578581479097108876, 4.69444008951545229445954931308, 6.29441893844356062568527921009, 7.12032331964608550877654080367, 8.138948933392736250176010346745, 9.228600904119461894514039439408, 10.05540701826271799474639862294, 11.50070555154639086049904901647, 12.60127086902683813831774516150

Graph of the ZZ-function along the critical line