L(s) = 1 | + (−0.866 + 0.5i)2-s + (1.21 − 1.23i)3-s + (0.499 − 0.866i)4-s + (2.73 + 1.57i)5-s + (−0.434 + 1.67i)6-s + (1.36 − 0.787i)7-s + 0.999i·8-s + (−0.0487 − 2.99i)9-s − 3.15·10-s + (−3.26 + 1.88i)11-s + (−0.461 − 1.66i)12-s + (−3.47 + 0.966i)13-s + (−0.787 + 1.36i)14-s + (5.27 − 1.45i)15-s + (−0.5 − 0.866i)16-s + 7.06·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.701 − 0.712i)3-s + (0.249 − 0.433i)4-s + (1.22 + 0.706i)5-s + (−0.177 + 0.684i)6-s + (0.515 − 0.297i)7-s + 0.353i·8-s + (−0.0162 − 0.999i)9-s − 0.998·10-s + (−0.983 + 0.567i)11-s + (−0.133 − 0.481i)12-s + (−0.963 + 0.268i)13-s + (−0.210 + 0.364i)14-s + (1.36 − 0.376i)15-s + (−0.125 − 0.216i)16-s + 1.71·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 + 0.0613i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 + 0.0613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36024 - 0.0417435i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36024 - 0.0417435i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-1.21 + 1.23i)T \) |
| 13 | \( 1 + (3.47 - 0.966i)T \) |
good | 5 | \( 1 + (-2.73 - 1.57i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.36 + 0.787i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.26 - 1.88i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 7.06T + 17T^{2} \) |
| 19 | \( 1 + 3.76iT - 19T^{2} \) |
| 23 | \( 1 + (1.84 - 3.20i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.109 - 0.189i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.65 + 1.53i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 0.292iT - 37T^{2} \) |
| 41 | \( 1 + (-6.39 - 3.69i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.05 + 5.29i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.17 - 3.56i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 14.4T + 53T^{2} \) |
| 59 | \( 1 + (9.04 + 5.22i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.00 - 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.33 - 3.65i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.772iT - 71T^{2} \) |
| 73 | \( 1 + 13.5iT - 73T^{2} \) |
| 79 | \( 1 + (-6.34 - 10.9i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.314 + 0.181i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 7.06iT - 89T^{2} \) |
| 97 | \( 1 + (-0.535 + 0.309i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.28900601578666752155789182507, −10.96518797330657632816068457512, −9.840878691215291256760115801013, −9.491150359066303318437397334111, −7.888627196093042073480478441155, −7.43657083650313929678038110742, −6.33671845116051119073235757062, −5.16532424263268325667529000304, −2.85889942830648546235385732899, −1.76409765835332206222012913033,
1.87602708748577297051869169750, 3.11372949108653322685213205989, 4.93881954450274170371056278386, 5.71739817690431645319953636788, 7.81554473651248109205300145001, 8.333273120087606100929493044489, 9.531785293306634158287182261048, 9.973303046699107096779236769654, 10.82515767816394440865436915401, 12.26278363757293837890398884475