L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.215 − 1.71i)3-s + (0.499 − 0.866i)4-s + (−2.40 − 1.38i)5-s + (1.04 + 1.38i)6-s + (−0.759 + 0.438i)7-s + 0.999i·8-s + (−2.90 + 0.739i)9-s + 2.77·10-s + (−1.92 + 1.11i)11-s + (−1.59 − 0.672i)12-s + (0.180 + 3.60i)13-s + (0.438 − 0.759i)14-s + (−1.86 + 4.43i)15-s + (−0.5 − 0.866i)16-s − 3.80·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.124 − 0.992i)3-s + (0.249 − 0.433i)4-s + (−1.07 − 0.621i)5-s + (0.426 + 0.563i)6-s + (−0.286 + 0.165i)7-s + 0.353i·8-s + (−0.969 + 0.246i)9-s + 0.878·10-s + (−0.581 + 0.335i)11-s + (−0.460 − 0.194i)12-s + (0.0499 + 0.998i)13-s + (0.117 − 0.202i)14-s + (−0.482 + 1.14i)15-s + (−0.125 − 0.216i)16-s − 0.923·17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.998−0.0499i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.998−0.0499i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.998−0.0499i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.998−0.0499i)
|
Particular Values
L(1) |
≈ |
0.00459662+0.184106i |
L(21) |
≈ |
0.00459662+0.184106i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(0.215+1.71i)T |
| 13 | 1+(−0.180−3.60i)T |
good | 5 | 1+(2.40+1.38i)T+(2.5+4.33i)T2 |
| 7 | 1+(0.759−0.438i)T+(3.5−6.06i)T2 |
| 11 | 1+(1.92−1.11i)T+(5.5−9.52i)T2 |
| 17 | 1+3.80T+17T2 |
| 19 | 1+2.22iT−19T2 |
| 23 | 1+(−0.259+0.449i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.81+6.60i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.97+2.87i)T+(15.5+26.8i)T2 |
| 37 | 1+11.3iT−37T2 |
| 41 | 1+(3.52+2.03i)T+(20.5+35.5i)T2 |
| 43 | 1+(−2.81−4.87i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.920+0.531i)T+(23.5−40.7i)T2 |
| 53 | 1−7.29T+53T2 |
| 59 | 1+(−3.52−2.03i)T+(29.5+51.0i)T2 |
| 61 | 1+(3.94+6.83i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.95−3.43i)T+(33.5+58.0i)T2 |
| 71 | 1−15.9iT−71T2 |
| 73 | 1+5.24iT−73T2 |
| 79 | 1+(7.09+12.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.641−0.370i)T+(41.5−71.8i)T2 |
| 89 | 1+9.89iT−89T2 |
| 97 | 1+(13.6−7.86i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.62680740226620312902661429905, −11.01780376987087781608488538813, −9.376015341933885465243554856698, −8.597116239560738905760335011207, −7.64391275421923405910319469033, −6.95305833587971595810862731125, −5.72675993555264815172923726517, −4.28576477999555865103491713814, −2.20206854333585498078501237327, −0.17479350460134072723781290997,
3.02627355683493464037854869151, 3.79769189613992710130313349386, 5.30692541755302680743277555490, 6.83421081267066051515075865832, 7.975260229757785515311372105147, 8.788940066070721758208790775687, 10.02620653277006528822256853189, 10.74994293600926345842159691503, 11.29110203307897059270011410484, 12.33231219484803472913442046001