L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.523 + 1.65i)3-s + (0.499 − 0.866i)4-s + (0.419 + 0.242i)5-s + (−1.27 − 1.16i)6-s + (−4.37 + 2.52i)7-s + 0.999i·8-s + (−2.45 + 1.72i)9-s − 0.484·10-s + (2.78 − 1.60i)11-s + (1.69 + 0.372i)12-s + (−2.69 + 2.39i)13-s + (2.52 − 4.37i)14-s + (−0.180 + 0.819i)15-s + (−0.5 − 0.866i)16-s + 4.20·17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.302 + 0.953i)3-s + (0.249 − 0.433i)4-s + (0.187 + 0.108i)5-s + (−0.521 − 0.476i)6-s + (−1.65 + 0.955i)7-s + 0.353i·8-s + (−0.817 + 0.575i)9-s − 0.153·10-s + (0.838 − 0.484i)11-s + (0.488 + 0.107i)12-s + (−0.748 + 0.663i)13-s + (0.675 − 1.16i)14-s + (−0.0465 + 0.211i)15-s + (−0.125 − 0.216i)16-s + 1.01·17-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.835−0.548i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.835−0.548i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.835−0.548i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.835−0.548i)
|
Particular Values
L(1) |
≈ |
0.217488+0.727609i |
L(21) |
≈ |
0.217488+0.727609i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1+(−0.523−1.65i)T |
| 13 | 1+(2.69−2.39i)T |
good | 5 | 1+(−0.419−0.242i)T+(2.5+4.33i)T2 |
| 7 | 1+(4.37−2.52i)T+(3.5−6.06i)T2 |
| 11 | 1+(−2.78+1.60i)T+(5.5−9.52i)T2 |
| 17 | 1−4.20T+17T2 |
| 19 | 1−3.21iT−19T2 |
| 23 | 1+(3.13−5.43i)T+(−11.5−19.9i)T2 |
| 29 | 1+(2.29+3.97i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−5.61−3.24i)T+(15.5+26.8i)T2 |
| 37 | 1+2.08iT−37T2 |
| 41 | 1+(−9.57−5.52i)T+(20.5+35.5i)T2 |
| 43 | 1+(−4.73−8.19i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.57+2.64i)T+(23.5−40.7i)T2 |
| 53 | 1−6.41T+53T2 |
| 59 | 1+(3.13+1.81i)T+(29.5+51.0i)T2 |
| 61 | 1+(−0.500−0.867i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.936+0.540i)T+(33.5+58.0i)T2 |
| 71 | 1−4.63iT−71T2 |
| 73 | 1+0.325iT−73T2 |
| 79 | 1+(−3.91−6.78i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−5.08+2.93i)T+(41.5−71.8i)T2 |
| 89 | 1+8.42iT−89T2 |
| 97 | 1+(11.3−6.52i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.31886349323643690850849151730, −11.57362580706695059872060581876, −10.04993030058563930795884076208, −9.671135368425318772949203821685, −9.007673480722066334742770541184, −7.81606301466223991105650757372, −6.28848727969463874937891352717, −5.70594670386442350599872392075, −3.89186922229373098476020668986, −2.63738366122715544227832534668,
0.71931663584770942631582219792, 2.62164727764586318473373408956, 3.80952257636989411526864995036, 6.01254117880649754959335792000, 7.02599497772931341253132404473, 7.60977773957647379740179390616, 9.060963319071470062423008746497, 9.735832161920703313303338055026, 10.62095862390008449431059041563, 12.12540120672950919225836110084