Properties

Label 2-234-1.1-c1-0-3
Degree $2$
Conductor $234$
Sign $1$
Analytic cond. $1.86849$
Root an. cond. $1.36693$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s − 7-s + 8-s + 3·10-s − 6·11-s + 13-s − 14-s + 16-s + 3·17-s + 2·19-s + 3·20-s − 6·22-s + 4·25-s + 26-s − 28-s − 6·29-s − 4·31-s + 32-s + 3·34-s − 3·35-s − 7·37-s + 2·38-s + 3·40-s − 43-s − 6·44-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.377·7-s + 0.353·8-s + 0.948·10-s − 1.80·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.458·19-s + 0.670·20-s − 1.27·22-s + 4/5·25-s + 0.196·26-s − 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s − 0.507·35-s − 1.15·37-s + 0.324·38-s + 0.474·40-s − 0.152·43-s − 0.904·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(234\)    =    \(2 \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1.86849\)
Root analytic conductor: \(1.36693\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 234,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.008799896\)
\(L(\frac12)\) \(\approx\) \(2.008799896\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.57399662018781984180868180363, −11.16559240112924374874969825279, −10.25096846899164676242515061975, −9.569105792671075621984918394603, −8.109212031498814193717580943346, −6.94019412385488865960361148937, −5.66417880764699758598698858020, −5.24164848449732929783448594193, −3.34467457020301574582723277384, −2.09859100780083292577684604843, 2.09859100780083292577684604843, 3.34467457020301574582723277384, 5.24164848449732929783448594193, 5.66417880764699758598698858020, 6.94019412385488865960361148937, 8.109212031498814193717580943346, 9.569105792671075621984918394603, 10.25096846899164676242515061975, 11.16559240112924374874969825279, 12.57399662018781984180868180363

Graph of the $Z$-function along the critical line