L(s) = 1 | + 2-s + 4-s + 3·5-s − 7-s + 8-s + 3·10-s − 6·11-s + 13-s − 14-s + 16-s + 3·17-s + 2·19-s + 3·20-s − 6·22-s + 4·25-s + 26-s − 28-s − 6·29-s − 4·31-s + 32-s + 3·34-s − 3·35-s − 7·37-s + 2·38-s + 3·40-s − 43-s − 6·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.377·7-s + 0.353·8-s + 0.948·10-s − 1.80·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.458·19-s + 0.670·20-s − 1.27·22-s + 4/5·25-s + 0.196·26-s − 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 0.514·34-s − 0.507·35-s − 1.15·37-s + 0.324·38-s + 0.474·40-s − 0.152·43-s − 0.904·44-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.008799896 |
L(21) |
≈ |
2.008799896 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1−3T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1+6T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1+7T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+T+pT2 |
| 47 | 1+3T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1−14T+pT2 |
| 71 | 1−3T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.57399662018781984180868180363, −11.16559240112924374874969825279, −10.25096846899164676242515061975, −9.569105792671075621984918394603, −8.109212031498814193717580943346, −6.94019412385488865960361148937, −5.66417880764699758598698858020, −5.24164848449732929783448594193, −3.34467457020301574582723277384, −2.09859100780083292577684604843,
2.09859100780083292577684604843, 3.34467457020301574582723277384, 5.24164848449732929783448594193, 5.66417880764699758598698858020, 6.94019412385488865960361148937, 8.109212031498814193717580943346, 9.569105792671075621984918394603, 10.25096846899164676242515061975, 11.16559240112924374874969825279, 12.57399662018781984180868180363