Properties

Label 2-2320-1.1-c3-0-156
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $136.884$
Root an. cond. $11.6997$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s − 5·5-s + 14·7-s + 37·9-s − 62·11-s + 42·13-s − 40·15-s − 114·17-s + 70·19-s + 112·21-s − 62·23-s + 25·25-s + 80·27-s − 29·29-s − 142·31-s − 496·33-s − 70·35-s + 146·37-s + 336·39-s + 162·41-s − 352·43-s − 185·45-s + 444·47-s − 147·49-s − 912·51-s − 238·53-s + 310·55-s + ⋯
L(s)  = 1  + 1.53·3-s − 0.447·5-s + 0.755·7-s + 1.37·9-s − 1.69·11-s + 0.896·13-s − 0.688·15-s − 1.62·17-s + 0.845·19-s + 1.16·21-s − 0.562·23-s + 1/5·25-s + 0.570·27-s − 0.185·29-s − 0.822·31-s − 2.61·33-s − 0.338·35-s + 0.648·37-s + 1.37·39-s + 0.617·41-s − 1.24·43-s − 0.612·45-s + 1.37·47-s − 3/7·49-s − 2.50·51-s − 0.616·53-s + 0.760·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(136.884\)
Root analytic conductor: \(11.6997\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
29 \( 1 + p T \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
7 \( 1 - 2 p T + p^{3} T^{2} \)
11 \( 1 + 62 T + p^{3} T^{2} \)
13 \( 1 - 42 T + p^{3} T^{2} \)
17 \( 1 + 114 T + p^{3} T^{2} \)
19 \( 1 - 70 T + p^{3} T^{2} \)
23 \( 1 + 62 T + p^{3} T^{2} \)
31 \( 1 + 142 T + p^{3} T^{2} \)
37 \( 1 - 146 T + p^{3} T^{2} \)
41 \( 1 - 162 T + p^{3} T^{2} \)
43 \( 1 + 352 T + p^{3} T^{2} \)
47 \( 1 - 444 T + p^{3} T^{2} \)
53 \( 1 + 238 T + p^{3} T^{2} \)
59 \( 1 + 840 T + p^{3} T^{2} \)
61 \( 1 - 2 T + p^{3} T^{2} \)
67 \( 1 - 154 T + p^{3} T^{2} \)
71 \( 1 + 892 T + p^{3} T^{2} \)
73 \( 1 + 38 T + p^{3} T^{2} \)
79 \( 1 + 1050 T + p^{3} T^{2} \)
83 \( 1 - 778 T + p^{3} T^{2} \)
89 \( 1 - 1410 T + p^{3} T^{2} \)
97 \( 1 - 466 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.114931425690514740569573413149, −7.85343645471940885447680708875, −7.09176589333032254614054280151, −5.86827057516832694327068891082, −4.84423863659621848699717762025, −4.10389421118643447789867394883, −3.17051820039886915576915139737, −2.43362398775419067404814876059, −1.57558170347222304912698906150, 0, 1.57558170347222304912698906150, 2.43362398775419067404814876059, 3.17051820039886915576915139737, 4.10389421118643447789867394883, 4.84423863659621848699717762025, 5.86827057516832694327068891082, 7.09176589333032254614054280151, 7.85343645471940885447680708875, 8.114931425690514740569573413149

Graph of the $Z$-function along the critical line