Properties

Label 2-2320-1.1-c1-0-41
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.857·3-s + 5-s − 2.23·7-s − 2.26·9-s + 3.21·11-s + 3.25·13-s − 0.857·15-s + 0.870·17-s − 5.02·19-s + 1.91·21-s − 8.46·23-s + 25-s + 4.51·27-s + 29-s − 0.0467·31-s − 2.75·33-s − 2.23·35-s + 11.1·37-s − 2.78·39-s − 2.47·41-s − 2.87·43-s − 2.26·45-s − 2.20·47-s − 1.99·49-s − 0.746·51-s − 11.7·53-s + 3.21·55-s + ⋯
L(s)  = 1  − 0.495·3-s + 0.447·5-s − 0.845·7-s − 0.754·9-s + 0.970·11-s + 0.901·13-s − 0.221·15-s + 0.211·17-s − 1.15·19-s + 0.418·21-s − 1.76·23-s + 0.200·25-s + 0.869·27-s + 0.185·29-s − 0.00839·31-s − 0.480·33-s − 0.378·35-s + 1.82·37-s − 0.446·39-s − 0.386·41-s − 0.437·43-s − 0.337·45-s − 0.321·47-s − 0.284·49-s − 0.104·51-s − 1.61·53-s + 0.433·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + 0.857T + 3T^{2} \)
7 \( 1 + 2.23T + 7T^{2} \)
11 \( 1 - 3.21T + 11T^{2} \)
13 \( 1 - 3.25T + 13T^{2} \)
17 \( 1 - 0.870T + 17T^{2} \)
19 \( 1 + 5.02T + 19T^{2} \)
23 \( 1 + 8.46T + 23T^{2} \)
31 \( 1 + 0.0467T + 31T^{2} \)
37 \( 1 - 11.1T + 37T^{2} \)
41 \( 1 + 2.47T + 41T^{2} \)
43 \( 1 + 2.87T + 43T^{2} \)
47 \( 1 + 2.20T + 47T^{2} \)
53 \( 1 + 11.7T + 53T^{2} \)
59 \( 1 - 7.68T + 59T^{2} \)
61 \( 1 + 4.99T + 61T^{2} \)
67 \( 1 + 11.6T + 67T^{2} \)
71 \( 1 - 3.43T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 + 6.44T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 - 16.7T + 89T^{2} \)
97 \( 1 + 7.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.646105262784239625125037835388, −7.996712059734354470346653712296, −6.69155100702590672734694161739, −6.15002442477047797403580457019, −5.86854034917099693709359681529, −4.54776113601425447121358042493, −3.72213409492117670013358292200, −2.73878388439611038319977209540, −1.49682472527592778986330103374, 0, 1.49682472527592778986330103374, 2.73878388439611038319977209540, 3.72213409492117670013358292200, 4.54776113601425447121358042493, 5.86854034917099693709359681529, 6.15002442477047797403580457019, 6.69155100702590672734694161739, 7.996712059734354470346653712296, 8.646105262784239625125037835388

Graph of the $Z$-function along the critical line