Properties

Label 2-2320-1.1-c1-0-40
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.806·3-s + 5-s − 1.19·7-s − 2.35·9-s − 4.15·11-s + 2.96·13-s − 0.806·15-s + 5.50·17-s + 3.19·19-s + 0.962·21-s − 1.84·23-s + 25-s + 4.31·27-s − 29-s + 4.80·31-s + 3.35·33-s − 1.19·35-s − 9.50·37-s − 2.38·39-s − 11.2·41-s + 0.0303·43-s − 2.35·45-s − 4.80·47-s − 5.57·49-s − 4.43·51-s − 1.35·53-s − 4.15·55-s + ⋯
L(s)  = 1  − 0.465·3-s + 0.447·5-s − 0.451·7-s − 0.783·9-s − 1.25·11-s + 0.821·13-s − 0.208·15-s + 1.33·17-s + 0.732·19-s + 0.210·21-s − 0.384·23-s + 0.200·25-s + 0.829·27-s − 0.185·29-s + 0.863·31-s + 0.583·33-s − 0.201·35-s − 1.56·37-s − 0.382·39-s − 1.76·41-s + 0.00462·43-s − 0.350·45-s − 0.701·47-s − 0.796·49-s − 0.621·51-s − 0.185·53-s − 0.560·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 + 0.806T + 3T^{2} \)
7 \( 1 + 1.19T + 7T^{2} \)
11 \( 1 + 4.15T + 11T^{2} \)
13 \( 1 - 2.96T + 13T^{2} \)
17 \( 1 - 5.50T + 17T^{2} \)
19 \( 1 - 3.19T + 19T^{2} \)
23 \( 1 + 1.84T + 23T^{2} \)
31 \( 1 - 4.80T + 31T^{2} \)
37 \( 1 + 9.50T + 37T^{2} \)
41 \( 1 + 11.2T + 41T^{2} \)
43 \( 1 - 0.0303T + 43T^{2} \)
47 \( 1 + 4.80T + 47T^{2} \)
53 \( 1 + 1.35T + 53T^{2} \)
59 \( 1 + 13.2T + 59T^{2} \)
61 \( 1 - 8.88T + 61T^{2} \)
67 \( 1 + 5.84T + 67T^{2} \)
71 \( 1 - 1.27T + 71T^{2} \)
73 \( 1 + 15.2T + 73T^{2} \)
79 \( 1 - 4.93T + 79T^{2} \)
83 \( 1 + 4.41T + 83T^{2} \)
89 \( 1 + 3.61T + 89T^{2} \)
97 \( 1 + 1.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.479608262859881067241113218834, −7.990946730738580309494609549983, −6.95933501230260744099342894564, −6.10145999244611337077111590056, −5.50618569288743473641584916961, −4.93110585012273394135103594309, −3.42120148486559331899263347288, −2.89992172422406699571306929457, −1.47880296336066571406827809111, 0, 1.47880296336066571406827809111, 2.89992172422406699571306929457, 3.42120148486559331899263347288, 4.93110585012273394135103594309, 5.50618569288743473641584916961, 6.10145999244611337077111590056, 6.95933501230260744099342894564, 7.990946730738580309494609549983, 8.479608262859881067241113218834

Graph of the $Z$-function along the critical line