Properties

Label 2-2320-1.1-c1-0-39
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.50·3-s + 5-s + 3.62·7-s + 3.28·9-s − 4.89·11-s + 3.57·13-s − 2.50·15-s − 3.35·17-s − 5.34·19-s − 9.07·21-s − 0.686·23-s + 25-s − 0.703·27-s + 29-s − 2.61·31-s + 12.2·33-s + 3.62·35-s − 9.72·37-s − 8.96·39-s + 9.24·41-s + 1.35·43-s + 3.28·45-s − 9.30·47-s + 6.12·49-s + 8.40·51-s − 6.87·53-s − 4.89·55-s + ⋯
L(s)  = 1  − 1.44·3-s + 0.447·5-s + 1.36·7-s + 1.09·9-s − 1.47·11-s + 0.992·13-s − 0.647·15-s − 0.812·17-s − 1.22·19-s − 1.98·21-s − 0.143·23-s + 0.200·25-s − 0.135·27-s + 0.185·29-s − 0.468·31-s + 2.13·33-s + 0.612·35-s − 1.59·37-s − 1.43·39-s + 1.44·41-s + 0.206·43-s + 0.489·45-s − 1.35·47-s + 0.875·49-s + 1.17·51-s − 0.944·53-s − 0.659·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 + 2.50T + 3T^{2} \)
7 \( 1 - 3.62T + 7T^{2} \)
11 \( 1 + 4.89T + 11T^{2} \)
13 \( 1 - 3.57T + 13T^{2} \)
17 \( 1 + 3.35T + 17T^{2} \)
19 \( 1 + 5.34T + 19T^{2} \)
23 \( 1 + 0.686T + 23T^{2} \)
31 \( 1 + 2.61T + 31T^{2} \)
37 \( 1 + 9.72T + 37T^{2} \)
41 \( 1 - 9.24T + 41T^{2} \)
43 \( 1 - 1.35T + 43T^{2} \)
47 \( 1 + 9.30T + 47T^{2} \)
53 \( 1 + 6.87T + 53T^{2} \)
59 \( 1 + 8.20T + 59T^{2} \)
61 \( 1 - 3.12T + 61T^{2} \)
67 \( 1 - 8.13T + 67T^{2} \)
71 \( 1 - 10.0T + 71T^{2} \)
73 \( 1 - 8.45T + 73T^{2} \)
79 \( 1 - 13.7T + 79T^{2} \)
83 \( 1 - 0.440T + 83T^{2} \)
89 \( 1 + 2.10T + 89T^{2} \)
97 \( 1 + 17.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.384973938814083878332076934873, −7.990541850548413667294133801897, −6.79933522152053092645817388968, −6.20309004284489061598729101706, −5.27720335641697514448284467530, −4.99736354220864527553981283968, −4.03016410445961040104685313353, −2.41388260543016615811503191897, −1.45341841580813551236910473219, 0, 1.45341841580813551236910473219, 2.41388260543016615811503191897, 4.03016410445961040104685313353, 4.99736354220864527553981283968, 5.27720335641697514448284467530, 6.20309004284489061598729101706, 6.79933522152053092645817388968, 7.990541850548413667294133801897, 8.384973938814083878332076934873

Graph of the $Z$-function along the critical line