Properties

Label 2-2320-1.1-c1-0-38
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.40·3-s + 5-s + 0.772·7-s + 8.57·9-s − 1.54·11-s + 3.85·13-s + 3.40·15-s − 1.22·17-s − 6.80·19-s + 2.62·21-s − 3.40·23-s + 25-s + 18.9·27-s + 29-s + 9.12·31-s − 5.25·33-s + 0.772·35-s − 0.454·37-s + 13.1·39-s + 3.54·41-s − 3.86·43-s + 8.57·45-s + 8·47-s − 6.40·49-s − 4.17·51-s − 0.318·53-s − 1.54·55-s + ⋯
L(s)  = 1  + 1.96·3-s + 0.447·5-s + 0.292·7-s + 2.85·9-s − 0.466·11-s + 1.06·13-s + 0.878·15-s − 0.297·17-s − 1.56·19-s + 0.573·21-s − 0.709·23-s + 0.200·25-s + 3.65·27-s + 0.185·29-s + 1.63·31-s − 0.915·33-s + 0.130·35-s − 0.0746·37-s + 2.10·39-s + 0.553·41-s − 0.589·43-s + 1.27·45-s + 1.16·47-s − 0.914·49-s − 0.584·51-s − 0.0437·53-s − 0.208·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.264406312\)
\(L(\frac12)\) \(\approx\) \(4.264406312\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 - 3.40T + 3T^{2} \)
7 \( 1 - 0.772T + 7T^{2} \)
11 \( 1 + 1.54T + 11T^{2} \)
13 \( 1 - 3.85T + 13T^{2} \)
17 \( 1 + 1.22T + 17T^{2} \)
19 \( 1 + 6.80T + 19T^{2} \)
23 \( 1 + 3.40T + 23T^{2} \)
31 \( 1 - 9.12T + 31T^{2} \)
37 \( 1 + 0.454T + 37T^{2} \)
41 \( 1 - 3.54T + 41T^{2} \)
43 \( 1 + 3.86T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 + 0.318T + 53T^{2} \)
59 \( 1 + 8.66T + 59T^{2} \)
61 \( 1 + 1.40T + 61T^{2} \)
67 \( 1 + 13.6T + 67T^{2} \)
71 \( 1 - 13.6T + 71T^{2} \)
73 \( 1 + 9.92T + 73T^{2} \)
79 \( 1 + 14.8T + 79T^{2} \)
83 \( 1 - 14.8T + 83T^{2} \)
89 \( 1 + 1.71T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.820454750735147143514062429404, −8.310211366195458854744108496307, −7.83368781583224225048444032266, −6.78515219454673908152273452064, −6.08374924331227186887950810740, −4.62209868021235168920958392737, −4.06987317398517438753492605415, −3.03574733236698846877669742580, −2.29161159261024942255706151586, −1.44370889314726540718880788983, 1.44370889314726540718880788983, 2.29161159261024942255706151586, 3.03574733236698846877669742580, 4.06987317398517438753492605415, 4.62209868021235168920958392737, 6.08374924331227186887950810740, 6.78515219454673908152273452064, 7.83368781583224225048444032266, 8.310211366195458854744108496307, 8.820454750735147143514062429404

Graph of the $Z$-function along the critical line