Properties

Label 2-2320-1.1-c1-0-36
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.90·3-s + 5-s − 0.903·7-s + 5.42·9-s + 5.52·11-s − 0.622·13-s + 2.90·15-s + 3.52·17-s + 1.09·19-s − 2.62·21-s − 5.33·23-s + 25-s + 7.05·27-s − 29-s + 1.65·31-s + 16.0·33-s − 0.903·35-s − 2.28·37-s − 1.80·39-s − 7.67·41-s + 1.09·43-s + 5.42·45-s + 1.65·47-s − 6.18·49-s + 10.2·51-s − 2.42·53-s + 5.52·55-s + ⋯
L(s)  = 1  + 1.67·3-s + 0.447·5-s − 0.341·7-s + 1.80·9-s + 1.66·11-s − 0.172·13-s + 0.749·15-s + 0.855·17-s + 0.251·19-s − 0.572·21-s − 1.11·23-s + 0.200·25-s + 1.35·27-s − 0.185·29-s + 0.297·31-s + 2.79·33-s − 0.152·35-s − 0.374·37-s − 0.289·39-s − 1.19·41-s + 0.167·43-s + 0.809·45-s + 0.241·47-s − 0.883·49-s + 1.43·51-s − 0.333·53-s + 0.745·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.862830387\)
\(L(\frac12)\) \(\approx\) \(3.862830387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 - 2.90T + 3T^{2} \)
7 \( 1 + 0.903T + 7T^{2} \)
11 \( 1 - 5.52T + 11T^{2} \)
13 \( 1 + 0.622T + 13T^{2} \)
17 \( 1 - 3.52T + 17T^{2} \)
19 \( 1 - 1.09T + 19T^{2} \)
23 \( 1 + 5.33T + 23T^{2} \)
31 \( 1 - 1.65T + 31T^{2} \)
37 \( 1 + 2.28T + 37T^{2} \)
41 \( 1 + 7.67T + 41T^{2} \)
43 \( 1 - 1.09T + 43T^{2} \)
47 \( 1 - 1.65T + 47T^{2} \)
53 \( 1 + 2.42T + 53T^{2} \)
59 \( 1 + 9.28T + 59T^{2} \)
61 \( 1 + 10.9T + 61T^{2} \)
67 \( 1 - 11.1T + 67T^{2} \)
71 \( 1 - 7.18T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 15.3T + 79T^{2} \)
83 \( 1 - 7.95T + 83T^{2} \)
89 \( 1 + 16.6T + 89T^{2} \)
97 \( 1 + 11.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.047067250519941058272575151335, −8.315105351374647657551037230892, −7.64550900838644964991957735691, −6.76187771708589136853220380264, −6.09188227127690924574333669058, −4.82022133134598833559201925454, −3.73667721452810618475048782909, −3.35211118480778182054904795429, −2.19452430266067776964663909734, −1.36879956828588715663350878648, 1.36879956828588715663350878648, 2.19452430266067776964663909734, 3.35211118480778182054904795429, 3.73667721452810618475048782909, 4.82022133134598833559201925454, 6.09188227127690924574333669058, 6.76187771708589136853220380264, 7.64550900838644964991957735691, 8.315105351374647657551037230892, 9.047067250519941058272575151335

Graph of the $Z$-function along the critical line