Properties

Label 2-2320-1.1-c1-0-21
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.31·3-s − 5-s − 4.86·7-s + 8.02·9-s + 4.15·11-s + 2.66·13-s − 3.31·15-s − 2.86·17-s + 0.651·19-s − 16.1·21-s + 4.65·23-s + 25-s + 16.6·27-s + 29-s + 4.17·31-s + 13.7·33-s + 4.86·35-s + 11.3·37-s + 8.85·39-s + 3.83·41-s − 12.0·43-s − 8.02·45-s − 7.48·47-s + 16.7·49-s − 9.52·51-s + 1.61·53-s − 4.15·55-s + ⋯
L(s)  = 1  + 1.91·3-s − 0.447·5-s − 1.84·7-s + 2.67·9-s + 1.25·11-s + 0.739·13-s − 0.857·15-s − 0.695·17-s + 0.149·19-s − 3.52·21-s + 0.970·23-s + 0.200·25-s + 3.20·27-s + 0.185·29-s + 0.749·31-s + 2.39·33-s + 0.823·35-s + 1.86·37-s + 1.41·39-s + 0.599·41-s − 1.83·43-s − 1.19·45-s − 1.09·47-s + 2.38·49-s − 1.33·51-s + 0.222·53-s − 0.559·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.183452417\)
\(L(\frac12)\) \(\approx\) \(3.183452417\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 - T \)
good3 \( 1 - 3.31T + 3T^{2} \)
7 \( 1 + 4.86T + 7T^{2} \)
11 \( 1 - 4.15T + 11T^{2} \)
13 \( 1 - 2.66T + 13T^{2} \)
17 \( 1 + 2.86T + 17T^{2} \)
19 \( 1 - 0.651T + 19T^{2} \)
23 \( 1 - 4.65T + 23T^{2} \)
31 \( 1 - 4.17T + 31T^{2} \)
37 \( 1 - 11.3T + 37T^{2} \)
41 \( 1 - 3.83T + 41T^{2} \)
43 \( 1 + 12.0T + 43T^{2} \)
47 \( 1 + 7.48T + 47T^{2} \)
53 \( 1 - 1.61T + 53T^{2} \)
59 \( 1 - 3.33T + 59T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 - 6.18T + 67T^{2} \)
71 \( 1 + 0.903T + 71T^{2} \)
73 \( 1 - 5.03T + 73T^{2} \)
79 \( 1 - 11.9T + 79T^{2} \)
83 \( 1 + 6.22T + 83T^{2} \)
89 \( 1 - 4.63T + 89T^{2} \)
97 \( 1 - 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.018738680394113288765886556380, −8.432839481848450285234139885996, −7.56214892926331181619837161746, −6.60863274099841056641377590771, −6.45428396030898889464505239520, −4.56391399622478394105090429628, −3.74801876499061573649718514447, −3.29711895461798390196372033096, −2.51946850000517124872616179491, −1.12622528782494871448205874528, 1.12622528782494871448205874528, 2.51946850000517124872616179491, 3.29711895461798390196372033096, 3.74801876499061573649718514447, 4.56391399622478394105090429628, 6.45428396030898889464505239520, 6.60863274099841056641377590771, 7.56214892926331181619837161746, 8.432839481848450285234139885996, 9.018738680394113288765886556380

Graph of the $Z$-function along the critical line