Properties

Label 2-2320-1.1-c1-0-18
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.14·3-s − 5-s + 3.89·7-s + 6.89·9-s + 4.29·11-s + 4.34·13-s + 3.14·15-s + 1.60·17-s + 1.20·19-s − 12.2·21-s + 8.34·23-s + 25-s − 12.2·27-s − 29-s + 2.39·31-s − 13.4·33-s − 3.89·35-s − 9.78·37-s − 13.6·39-s + 5.78·41-s − 3.60·43-s − 6.89·45-s − 8.58·47-s + 8.14·49-s − 5.03·51-s + 4.80·53-s − 4.29·55-s + ⋯
L(s)  = 1  − 1.81·3-s − 0.447·5-s + 1.47·7-s + 2.29·9-s + 1.29·11-s + 1.20·13-s + 0.812·15-s + 0.388·17-s + 0.275·19-s − 2.67·21-s + 1.74·23-s + 0.200·25-s − 2.35·27-s − 0.185·29-s + 0.430·31-s − 2.34·33-s − 0.657·35-s − 1.60·37-s − 2.18·39-s + 0.903·41-s − 0.549·43-s − 1.02·45-s − 1.25·47-s + 1.16·49-s − 0.705·51-s + 0.659·53-s − 0.578·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.363774055\)
\(L(\frac12)\) \(\approx\) \(1.363774055\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 + 3.14T + 3T^{2} \)
7 \( 1 - 3.89T + 7T^{2} \)
11 \( 1 - 4.29T + 11T^{2} \)
13 \( 1 - 4.34T + 13T^{2} \)
17 \( 1 - 1.60T + 17T^{2} \)
19 \( 1 - 1.20T + 19T^{2} \)
23 \( 1 - 8.34T + 23T^{2} \)
31 \( 1 - 2.39T + 31T^{2} \)
37 \( 1 + 9.78T + 37T^{2} \)
41 \( 1 - 5.78T + 41T^{2} \)
43 \( 1 + 3.60T + 43T^{2} \)
47 \( 1 + 8.58T + 47T^{2} \)
53 \( 1 - 4.80T + 53T^{2} \)
59 \( 1 - 4.05T + 59T^{2} \)
61 \( 1 - 11.4T + 61T^{2} \)
67 \( 1 + 9.08T + 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 2.39T + 73T^{2} \)
79 \( 1 + 7.55T + 79T^{2} \)
83 \( 1 + 2.79T + 83T^{2} \)
89 \( 1 + 4.29T + 89T^{2} \)
97 \( 1 + 0.348T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.911509985105241525149901627989, −8.225555723564019612679746299702, −7.13610196264072517862210565184, −6.71229722605667698273601352902, −5.73360341344603650582517516797, −5.10795396701565218452540737344, −4.41153896585290845959839962050, −3.58513692295709829709026224148, −1.51091596919083979915584527398, −0.976472980196388088383635668060, 0.976472980196388088383635668060, 1.51091596919083979915584527398, 3.58513692295709829709026224148, 4.41153896585290845959839962050, 5.10795396701565218452540737344, 5.73360341344603650582517516797, 6.71229722605667698273601352902, 7.13610196264072517862210565184, 8.225555723564019612679746299702, 8.911509985105241525149901627989

Graph of the $Z$-function along the critical line