Properties

Label 2-2320-1.1-c1-0-17
Degree $2$
Conductor $2320$
Sign $1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.70·3-s + 5-s + 3.70·7-s − 0.0783·9-s + 4.63·11-s − 4.34·13-s − 1.70·15-s + 2.63·17-s + 5.70·19-s − 6.34·21-s + 4.78·23-s + 25-s + 5.26·27-s − 29-s − 10.3·31-s − 7.91·33-s + 3.70·35-s + 6.04·37-s + 7.41·39-s − 9.60·41-s + 5.70·43-s − 0.0783·45-s − 10.3·47-s + 6.75·49-s − 4.49·51-s + 3.07·53-s + 4.63·55-s + ⋯
L(s)  = 1  − 0.986·3-s + 0.447·5-s + 1.40·7-s − 0.0261·9-s + 1.39·11-s − 1.20·13-s − 0.441·15-s + 0.638·17-s + 1.30·19-s − 1.38·21-s + 0.998·23-s + 0.200·25-s + 1.01·27-s − 0.185·29-s − 1.86·31-s − 1.37·33-s + 0.626·35-s + 0.994·37-s + 1.18·39-s − 1.49·41-s + 0.870·43-s − 0.0116·45-s − 1.51·47-s + 0.965·49-s − 0.629·51-s + 0.422·53-s + 0.624·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.724923185\)
\(L(\frac12)\) \(\approx\) \(1.724923185\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 + T \)
good3 \( 1 + 1.70T + 3T^{2} \)
7 \( 1 - 3.70T + 7T^{2} \)
11 \( 1 - 4.63T + 11T^{2} \)
13 \( 1 + 4.34T + 13T^{2} \)
17 \( 1 - 2.63T + 17T^{2} \)
19 \( 1 - 5.70T + 19T^{2} \)
23 \( 1 - 4.78T + 23T^{2} \)
31 \( 1 + 10.3T + 31T^{2} \)
37 \( 1 - 6.04T + 37T^{2} \)
41 \( 1 + 9.60T + 41T^{2} \)
43 \( 1 - 5.70T + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 - 3.07T + 53T^{2} \)
59 \( 1 - 7.23T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 + 8.20T + 67T^{2} \)
71 \( 1 + 5.75T + 71T^{2} \)
73 \( 1 - 5.55T + 73T^{2} \)
79 \( 1 - 5.21T + 79T^{2} \)
83 \( 1 - 1.55T + 83T^{2} \)
89 \( 1 - 3.57T + 89T^{2} \)
97 \( 1 + 5.55T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.147739832905329091708299005959, −8.185935419091983803497888997942, −7.29591875022095861133876568528, −6.72445440295037861296373105634, −5.51571320238036937783075273215, −5.30025853644153223241245211964, −4.45360171894571214656115523475, −3.23567460833641794162329489770, −1.87376336417282290375137325130, −0.957358536807291547678858236720, 0.957358536807291547678858236720, 1.87376336417282290375137325130, 3.23567460833641794162329489770, 4.45360171894571214656115523475, 5.30025853644153223241245211964, 5.51571320238036937783075273215, 6.72445440295037861296373105634, 7.29591875022095861133876568528, 8.185935419091983803497888997942, 9.147739832905329091708299005959

Graph of the $Z$-function along the critical line